OFFSET
0,10
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2)* eta(q^3)^3* eta(q^36))/(eta(q)* eta(q^4)* eta(q^6)* eta(q^18)^2) in powers of q.
Euler transform of period 36 sequence [ 1, 0, -2, 1, 1, -2, 1, 1, -2, 0, 1, -1, 1, 0, -2, 1, 1, 0, 1, 1, -2, 0, 1, -1, 1, 0, -2, 1, 1, -2, 1, 1, -2, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - 1)*(3 - 3*v + v^2)*(2*u - u^2)^2 - (u + v - u*v)^2*(u - v)^2.
a(6n+4)=0. a(6n)=0 if n > 0.
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A128145[n_] := SeriesCoefficient[ eta[q^2]*eta[q^3]^3*eta[q^36]/(eta[q]*eta[q^4]*eta[q^6]*eta[q^18]^2 ), {q, 0, n}]; Table[A128145[n], {n, 0, 50}] (* G. C. Greubel, Aug 16 2017 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)*eta(x^36+A)*eta(x^3+A)^3/ (eta(x+A)*eta(x^4+A)*eta(x^6+A)*eta(x^18+A)^2), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 16 2007
STATUS
approved