login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128145
Expansion of psi(q^3)* phi(-q^3)* chi^2(-q^3)/( psi(-q)* phi(-q^18)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
4
1, 1, 1, -1, 0, 1, 0, -1, -1, 2, 0, -3, 0, 2, 0, -3, 0, 5, 0, -4, 2, 4, 0, -5, 0, 7, -2, -7, 0, 5, 0, -10, -1, 12, 0, -10, 0, 14, 4, -17, 0, 21, 0, -22, -4, 24, 0, -34, 0, 33, -1, -36, 0, 45, 0, -45, 8, 52, 0, -55, 0, 62, -8, -71, 0, 70, 0, -88, -2, 96, 0, -98, 0, 122, 14, -133, 0, 148, 0, -163, -14, 182, 0, -217, 0, 216
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) := Product_{k>=1} (1 - (-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1 + q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2)* eta(q^3)^3* eta(q^36))/(eta(q)* eta(q^4)* eta(q^6)* eta(q^18)^2) in powers of q.
Euler transform of period 36 sequence [ 1, 0, -2, 1, 1, -2, 1, 1, -2, 0, 1, -1, 1, 0, -2, 1, 1, 0, 1, 1, -2, 0, 1, -1, 1, 0, -2, 1, 1, -2, 1, 1, -2, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - 1)*(3 - 3*v + v^2)*(2*u - u^2)^2 - (u + v - u*v)^2*(u - v)^2.
a(6n+4)=0. a(6n)=0 if n > 0.
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A128145[n_] := SeriesCoefficient[ eta[q^2]*eta[q^3]^3*eta[q^36]/(eta[q]*eta[q^4]*eta[q^6]*eta[q^18]^2 ), {q, 0, n}]; Table[A128145[n], {n, 0, 50}] (* G. C. Greubel, Aug 16 2017 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)*eta(x^36+A)*eta(x^3+A)^3/ (eta(x+A)*eta(x^4+A)*eta(x^6+A)*eta(x^18+A)^2), n))}
CROSSREFS
A092848(n) = a(6n+2). A128143(n) = a(n) if n > 0. A128144(n) = -a(n) if n > 0.
Sequence in context: A213266 A182038 A128144 * A128143 A292561 A027640
KEYWORD
sign
AUTHOR
Michael Somos, Feb 16 2007
STATUS
approved