The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156816 Decimal expansion of the positive root of the equation 13x^4 - 7x^2 - 581 = 0. 0
 2, 6, 3, 8, 1, 5, 8, 5, 3, 0, 3, 4, 1, 7, 4, 0, 8, 6, 8, 4, 3, 0, 3, 0, 7, 5, 6, 6, 7, 4, 4, 4, 1, 3, 0, 4, 8, 8, 8, 0, 5, 0, 2, 2, 0, 1, 0, 3, 1, 8, 3, 5, 9, 7, 3, 7, 0, 7, 8, 7, 0, 6, 0, 7, 7, 6, 9, 6, 3, 2, 1, 9, 7, 0, 7, 3, 5, 5, 9, 5, 9, 8, 8, 9, 3, 2, 0, 0, 5, 1, 8, 9, 0, 0, 0, 9, 8, 3, 3, 5, 2, 4, 2, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This constant approximates the connective constant of the square lattice, which is known only numerically, but "no derivation or explanation of this quartic polynomial is known, and later evidence has raised doubts about its validity" [Bauerschmidt et al, 2012, p. 4]. - Andrey Zabolotskiy, Dec 26 2018 REFERENCES N. Madras and G. Slade, The Self-Avoiding Walk (Boston, Birkhauser), 1993. LINKS Table of n, a(n) for n=1..105. Roland Bauerschmidt, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade, Lectures on Self-Avoiding Walks, arXiv:1206.2092 [math.PR], 2012. M. Bousquet-Mélou, A. J. Guttmann and I. Jensen, Self-avoiding walks crossing a square, arXiv:cond-mat/0506341, 2005. Pierre-Louis Giscard, Que sait-on compter sur un graphe. Partie 3 (in French), Images des Mathématiques, CNRS, 2020. Jesper Lykke Jacobsen, Christian R. Scullard, and Anthony J. Guttmann, On the growth constant for square-lattice self-avoiding walks, J. Phys. A: Math. Theor., 49 (2016), 494004; arXiv:1607.02984 [cond-mat.stat-mech], 2016. Index entries for algebraic numbers, degree 4 FORMULA x = sqrt(7/26 + sqrt(30261)/26). EXAMPLE x = 2.63815853034174086843... MATHEMATICA RealDigits[Sqrt[1/26*(7+Sqrt[30261])], 10, 120][[1]] (* Harvey P. Dale, Nov 22 2014 *) PROG (PARI) polrootsreal(13*x^4-7*x^2-581)[2] \\ Charles R Greathouse IV, Apr 16 2014 CROSSREFS Cf. A001411, A002931, A179260, A249776. Sequence in context: A176014 A011447 A076041 * A021383 A296456 A256592 Adjacent sequences: A156813 A156814 A156815 * A156817 A156818 A156819 KEYWORD cons,nonn AUTHOR Zak Seidov, Feb 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 01:34 EDT 2024. Contains 371887 sequences. (Running on oeis4.)