OFFSET
1,1
COMMENTS
This constant approximates the connective constant of the square lattice, which is known only numerically, but "no derivation or explanation of this quartic polynomial is known, and later evidence has raised doubts about its validity" [Bauerschmidt et al, 2012, p. 4]. - Andrey Zabolotskiy, Dec 26 2018
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.10, p. 331.
N. Madras and G. Slade, The Self-Avoiding Walk (Boston, Birkhauser), 1993.
LINKS
Roland Bauerschmidt, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade, Lectures on Self-Avoiding Walks, arXiv:1206.2092 [math.PR], 2012.
M. Bousquet-Mélou, A. J. Guttmann and I. Jensen, Self-avoiding walks crossing a square, arXiv:cond-mat/0506341, 2005.
Pierre-Louis Giscard, Que sait-on compter sur un graphe. Partie 3 (in French), Images des Mathématiques, CNRS, 2020.
Jesper Lykke Jacobsen, Christian R. Scullard, and Anthony J. Guttmann, On the growth constant for square-lattice self-avoiding walks, J. Phys. A: Math. Theor., 49 (2016), 494004; arXiv:1607.02984 [cond-mat.stat-mech], 2016.
FORMULA
x = sqrt(7/26 + sqrt(30261)/26).
EXAMPLE
x = 2.63815853034174086843...
MATHEMATICA
RealDigits[Sqrt[1/26*(7+Sqrt[30261])], 10, 120][[1]] (* Harvey P. Dale, Nov 22 2014 *)
PROG
(PARI) polrootsreal(13*x^4-7*x^2-581)[2] \\ Charles R Greathouse IV, Apr 16 2014
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Zak Seidov, Feb 16 2009
STATUS
approved