OFFSET
0,6
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = n!*StirlingS2(n, k)/binomial(n, k).
From G. C. Greubel, Jun 10 2021: (Start)
T(n, 1) = T(n, n) = n!.
T(n, 2) = 2*A029767(n+1).
T(n, n-1) = A180119(n). (End)
EXAMPLE
Triangle begins as:
1;
0, 1;
0, 1, 2;
0, 2, 6, 6;
0, 6, 28, 36, 24;
0, 24, 180, 300, 240, 120;
0, 120, 1488, 3240, 3120, 1800, 720;
0, 720, 15120, 43344, 50400, 33600, 15120, 5040;
0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320;
MATHEMATICA
T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma) [Factorial(n)*StirlingSecond(n, k)/Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
(Sage) flatten([[factorial(n)*stirling_number2(n, k)/binomial(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 16 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 10 2021
STATUS
approved