login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156815
Triangle T(n, k) = n!*StirlingS2(n, k)/binomial(n, k), read by rows.
1
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 28, 36, 24, 0, 24, 180, 300, 240, 120, 0, 120, 1488, 3240, 3120, 1800, 720, 0, 720, 15120, 43344, 50400, 33600, 15120, 5040, 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320, 0, 40320, 2570400, 13068000, 22377600, 20018880, 11430720, 4656960, 1451520, 362880
OFFSET
0,6
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99.
FORMULA
T(n, k) = n!*StirlingS2(n, k)/binomial(n, k).
From G. C. Greubel, Jun 10 2021: (Start)
T(n, 1) = T(n, n) = n!.
T(n, 2) = 2*A029767(n+1).
T(n, n-1) = A180119(n). (End)
EXAMPLE
Triangle begins as:
1;
0, 1;
0, 1, 2;
0, 2, 6, 6;
0, 6, 28, 36, 24;
0, 24, 180, 300, 240, 120;
0, 120, 1488, 3240, 3120, 1800, 720;
0, 720, 15120, 43344, 50400, 33600, 15120, 5040;
0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320;
MATHEMATICA
T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma) [Factorial(n)*StirlingSecond(n, k)/Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
(Sage) flatten([[factorial(n)*stirling_number2(n, k)/binomial(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 16 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 10 2021
STATUS
approved