OFFSET
0,2
COMMENTS
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
FORMULA
T(n, k) = T(n, k-1) + 4.
T(n+4, 0) = T(n, n) + 4 for n > 3.
T(2*n, n) = 2 * (n^2 + n + 1) - (-1)^n = A001844(n) + 1 - (-1)^n.
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n \k : 0 1 2 3 4 5 6 7 8 9 10 11
======================================================
0 : 1
1 : 2 6
2 : 3 7 11
3 : 4 8 12 16
4 : 5 9 13 17 21
5 : 10 14 18 22 26 30
6 : 15 19 23 27 31 35 39
7 : 20 24 28 32 36 40 44 48
8 : 25 29 33 37 41 45 49 53 57
9 : 34 38 42 46 50 54 58 62 66 70
10 : 43 47 51 55 59 63 67 71 75 79 83
11 : 52 56 60 64 68 72 76 80 84 88 92 96
etc.
MATHEMATICA
Table[Range[#, #+n*4, 4] & [(Mod[n^2, 8] + n*(n-2) - (-1)^n + 3)/2], {n, 0, 15}] (* Paolo Xausa, Nov 13 2024 *)
PROG
(PARI) T(n, k)=(n^2-2*n+3-(-1)^n+n^2%8)/2+4*k
(Python)
from math import math, isqrt
def A376468(n): return ((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(a-2)+3+(1 if a&1 else -1)+(a**2&7)>>1)+(n-comb(a+1, 2)<<2) # Chai Wah Wu, Nov 12 2024
CROSSREFS
KEYWORD
AUTHOR
Werner Schulte, Sep 23 2024
STATUS
approved