login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376467
Triangular array read by rows: A063007 * A007318.
2
1, 3, 2, 13, 18, 6, 63, 132, 90, 20, 321, 900, 930, 420, 70, 1683, 5910, 8190, 5600, 1890, 252, 8989, 37926, 65940, 60480, 30870, 8316, 924, 48639, 239624, 501228, 577080, 395010, 160776, 36036, 3432, 265729, 1497096, 3660300, 5072760, 4358970, 2378376, 804804, 154440, 12870, 1462563, 9274410, 25951860, 42060480, 43513470, 29801772, 13513500, 3912480, 656370, 48620
OFFSET
0,2
COMMENTS
Note that the n-th row generating polynomial of A063007 is equal to P(n,2*x + 1), where P(n,x) denotes the n-th Legendre polynomial.
The matrix product A063007 * A007318^(-1) is equal to a signed version of A063007 and A007318^(-1) * A063007 = A115951.
FORMULA
T(n, k) = Sum_{j = k..n} binomial(n, j)*binomial(n+j, j)*binomial(j, k).
(n - k)*T(n, k) = 3*(2*n - 1)*T(n-1, k) - (n + k - 1)*T(n-2, k).
T(n, k) = (1/k!) * (d/dx)^k (P(n, 2*x+1)) evaluated at x = 1, where P(n,x) denotes the n-th Legendre polynomial.
G.f. for triangle: 1/sqrt(1 - 6*t + t^2 - 4*t*x) = 1 + (3 + 2*x)*t + (13 + 18*x + 6*x^2)*t^2 + ....
G.f. for column k: binomial(2*k, k) * x^k/(1 - 6*x + x^2)^(k+1/2).
T(n, k) is divisible by binomial(2*k, k) and the array ( T(n, k)/binomial(2*k, k) )n,k >= 0 is the Riordan array (1/sqrt(1 - 6*x + x^2), x/(1 - 6*x + x^2)).
T(n, k) is divisible by binomial(n+k, k) and the array ( T(n, k)/binomial(n+k, k) )n,k >= 0 is the Riordan array A118384.
T(n, n) = binomial(2*n, n); T(n, n-1) = 3*(2*n-1)!/(n-1)!^2 = 3 * A002457(n-1) for n >= 1.
The n-th row polynomial R(n, x) = Sum_{k = 0..n} binomial(n, k)*binomial(n+k, k)*(1 + x)^k = P(n, 2*x+3) = hypergeom([-n, n+1], [1], -1-x).
Recurrence: n*R(n, x) = (2*x + 3)*(2*n - 1)*R(n-1, x) - (n - 1)*R(n-2, x) with R(0, x) = 1.
If we set R(-1,x) = 1, we can run the recurrence backwards to give R(-n, x) = Sum_{k = 0..n} binomial(-n, k)*binomial(-n+k, k)*(1 + x)^k = R(n-1, x).
R(n, x) = (-1)^n * R(n, -x-3).
R(n, x) = 1/n! * (d/dx)^n( ((1 + x)*(2 + x))^n ).
R(1, x) = 3 + 2*x divides R(2*n+1, x) in the polynomial ring Z[x].
EXAMPLE
Triangle begins
n\k| 0 1 2 3 4 5 6 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1
1 | 3 2
2 | 13 18 6
3 | 63 132 90 20
4 | 321 900 930 420 70
5 | 1683 5910 8190 5600 1890 252
6 | 8989 37926 65940 60480 30870 8316 924
7 | 48639 239624 501228 577080 395010 160776 36036 3432
...
MAPLE
A376467 := proc(n, k); add(binomial(n, j)*binomial(n+j, j)*binomial(j, k), j = k..n) end:
seq(print(seq(A376467(n, k) , k = 0..n)), n = 0..10);
CROSSREFS
A000984 (main diagonal), A002457( (1/3)*first subdiagonal ), A001850 (Column 0), A002695 ( (1/2)*Column 1 ), A277660 ( (1/3)*Column 2 ), A006442 (row sums).
Sequence in context: A005352 A095131 A060149 * A059374 A098384 A243253
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Sep 30 2024
STATUS
approved