The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115951 Expansion of 1/sqrt(1-4*x*y-4*x^2*y). 3
 1, 0, 2, 0, 2, 6, 0, 0, 12, 20, 0, 0, 6, 60, 70, 0, 0, 0, 60, 280, 252, 0, 0, 0, 20, 420, 1260, 924, 0, 0, 0, 0, 280, 2520, 5544, 3432, 0, 0, 0, 0, 70, 2520, 13860, 24024, 12870, 0, 0, 0, 0, 0, 1260, 18480, 72072, 102960, 48620, 0, 0, 0, 0, 0, 252, 13860, 120120, 360360, 437580, 184756 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row sums are A006139. Diagonal sums are A115962. Coefficients of 2^n * P(n, x) with P the Legendre P polynomials. Reflection of triangle A008556. - Ralf Stephan, Apr 07 2016. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA Number triangle T(n,k) = C(2k,k)*C(k,n-k). From Peter Bala, Sep 02 2015: (Start) Binomial transform is A063007; equivalently, P * M = A063007, where P denotes Pascal's triangle A007318 and M denotes the present array. P * M * P^-1 is a signed version of A063007. (End) EXAMPLE Triangle begins 1, 0, 2, 0, 2, 6, 0, 0, 12, 20, 0, 0, 6, 60, 70, 0, 0, 0, 60, 280, 252, 0, 0, 0, 20, 420, 1260, 924 MATHEMATICA Table[Binomial[2k, k]Binomial[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Sep 02 2015 *) PROG (Magma) /* As triangle */ [[Binomial(2*k, k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015 (PARI) {T(n, k) = binomial(2*k, k)*binomial(k, n-k)}; \\ G. C. Greubel, May 06 2019 (Sage) [[binomial(2*k, k)*binomial(k, n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 06 2019 CROSSREFS Cf. A006139 (row sums), A063007 (binomial transform), A115962 (diagonal sums). Sequence in context: A033721 A033739 A033733 * A264954 A212085 A265882 Adjacent sequences: A115948 A115949 A115950 * A115952 A115953 A115954 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Mar 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 10:32 EST 2023. Contains 359993 sequences. (Running on oeis4.)