login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115962
Expansion of 1/sqrt(1-4*x^2-4*x^3).
8
1, 0, 2, 2, 6, 12, 26, 60, 130, 300, 672, 1540, 3514, 8064, 18552, 42756, 98802, 228624, 530024, 1230372, 2860000, 6655792, 15505932, 36159552, 84398626, 197154984, 460903796, 1078251044, 2524144224, 5912535672, 13857378300, 32495267712
OFFSET
0,3
COMMENTS
Diagonal sums of number triangle A115951.
Number of lattice paths from (0,0) to (n,n) using steps (2,1), (1,0), (1,2). - Joerg Arndt, Jul 05 2011
Diagonal of rational function 1/(1 - (x^2 + y^2 + x^3*y)). - Seiichi Manyama, Mar 22 2023
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(2*k,k)*C(k,n-2*k).
G.f.: Q(0), where Q(k) = 1 + 4*x*(x+x^2)*(4*k+1) / (4*k+2 - 4*x*(x+x^2)*(4*k+2)*(4*k+3) / (4*x*(x+x^2)*(4*k+3) + 4*(k+1) / Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
D-finite with recurrence: n*a(n) - 4*(n-1)*a(n-2) - 2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
MAPLE
A115962 := proc(n)
option remember;
if n < 4 then
op(n+1, [1, 0, 2, 2]);
else
4*(n-1)*procname(n-2)+2*(2*n-3)*procname(n-3) ;
%/n ;
end if;
end proc:
seq(A115962(n), n=0..20) ; # R. J. Mathar, Jan 14 2020
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4x^2-4x^3], {x, 0, 35}], x] (* or *) Table[Sum[Binomial[2k, k] Binomial[k, n-2k], {k, 0, Floor[n/2]}], {n, 0, 35}] (* Michael De Vlieger, Sep 03 2015 *)
PROG
(PARI) x = xx+O(xx^40); Vec(1/sqrt(1-4*x^2-4*x^3)) \\ Michel Marcus, Sep 03 2015
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1-4*x^2-4*x^3) )); // G. C. Greubel, May 06 2019
(Sage) (1/sqrt(1-4*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 06 2019
CROSSREFS
Sequence in context: A324128 A217211 A035615 * A019311 A216215 A052994
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 14 2006
STATUS
approved