

A115959


Numbers n having exactly 5 distinct prime factors, the largest of which is greater than or equal to sqrt(n) (i.e., sqrt(n)rough numbers with exactly 5 distinct prime factors).


5



44310, 46830, 47670, 48090, 48930, 50190, 50610, 52710, 53970, 55230, 56490, 56910, 58170, 59010, 59430, 61530, 64470, 65310, 65730, 66570, 69510, 70770, 72870, 73290, 74130, 75390, 77070, 78330, 79590, 80430, 81690, 83370, 84210
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..33.


EXAMPLE

46830 is in the sequence because it has 5 distinct prime factors (2, 3, 5, 7 and 223) and 223 > sqrt(46830).


MAPLE

with(numtheory): a:=proc(n) if nops(factorset(n))=5 and factorset(n)[5]^2>=n then n else fi end: seq(a(n), n=1..93000);


CROSSREFS

Cf. A115956, A115957, A115958, A115960, A115961.
Sequence in context: A015388 A257714 A204668 * A045937 A138359 A178553
Adjacent sequences: A115956 A115957 A115958 * A115960 A115961 A115962


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Feb 02 2006


STATUS

approved



