login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249776
Decimal expansion of the connective constant of the (3.12^2) lattice.
2
1, 7, 1, 1, 0, 4, 1, 2, 9, 6, 8, 4, 4, 8, 4, 8, 4, 6, 4, 1, 1, 7, 0, 8, 7, 4, 6, 3, 1, 0, 4, 4, 5, 4, 0, 6, 7, 9, 9, 3, 2, 1, 9, 3, 2, 6, 9, 2, 4, 8, 1, 9, 5, 9, 7, 7, 0, 0, 8, 0, 7, 8, 5, 8, 3, 9, 4, 9, 2, 5, 0, 2
OFFSET
1,2
COMMENTS
An algebraic integer of degree 12: largest real root of x^12 - 4x^8 - 8x^7 - 4x^6 + 2x^4 + 8x^3 + 12x^2 + 8x + 2.
EXAMPLE
1.71104129684484846411708746310445406799321932692481959770080785839492...
MATHEMATICA
(* Illustration of the (3.12^2) lattice. *)
hex312[frac_] := {Re[#], Im[#]} & /@
Flatten[Table[
With[{a = Exp[2 Pi I (n - 1/2)/6], b = Exp[2 Pi I ( n + 1/2)/6],
c = Exp[2 Pi I (n + 3/2)/6]}, {(1 - frac) b +
frac a, (1 - frac) b + frac c}], {n, 6}]]
shiftPoly[shifts_, coords_] :=
Line[Append[#, #[[1]]]] & /@
Outer[#1 + #2 &, shifts*1.001, coords, 1, 1]
tri = 1/5; (* Arbitrary, subject to 0 < tri < 1/2; determines size of triangles compared to hexagons. *)
Graphics[{Gray,
shiftPoly[{{0, 0}, {Sqrt[3], 0}, {2 Sqrt[3], 0}, {3 Sqrt[3],
0}, {Sqrt[3]/2, 3/2}, {3 Sqrt[3]/2, 3/2}, {5 Sqrt[3]/2,
3/2}, {7 Sqrt[3]/2, 3/2}, {0, 3}, {Sqrt[3], 3}, {2 Sqrt[3],
3}, {3 Sqrt[3], 3}, {Sqrt[3]/2, 9/2}, {3 Sqrt[3]/2,
9/2}, {5 Sqrt[3]/2, 9/2}, {7 Sqrt[3]/2, 9/2}}, hex312[tri]]}]
PROG
(PARI) polrootsreal(x^12-4*x^8-8*x^7-4*x^6+2*x^4+8*x^3+12*x^2+8*x+2)[4]
CROSSREFS
Other connective constants: A179260 (hexagonal or honeycomb lattice).
Sequence in context: A361602 A281115 A370363 * A348970 A053878 A070672
KEYWORD
nonn,cons
AUTHOR
STATUS
approved