login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249779
Row "sums" of Pascal triangle (A007318), using operation <+> defined in comment in A245618.
1
1, 2, 2, 2, 2, 22, 20, 28, 2, 494, 912, 1672, 2376, 4836, 4160, 4184, 2, 131038, 261800, 522272, 1035804, 2053288, 3977272, 7742352, 13942968, 28016020, 47111040, 84948528, 92072064, 272727022, 249686810, 167376688, 2, 8589934526, 17179867992, 34359725136
OFFSET
0,2
COMMENTS
Operation <+> is defined in A245618 as: k<+>m = |k+(-1)^(k+m)*m|.
a(n)=2 for n=1,2,3,4,8,16,32,64,128,256,...
LINKS
EXAMPLE
For n=4, we have row 1,4,6,4,1.
By definition of <+>, we find 1<+>4=3, 3<+>6=3, 3<+>4=1, 1<+>1=2. So a(4)=2.
MATHEMATICA
a249779[n_Integer] := Module[{m0082, pls, lst},
m0082[j_] := Table[Binomial[j, k], {k, 0, j}];
pls[k_, m_] := Abs[k + (-1)^(k + m)*m];
lst = m0082[n];
For[i = 0, i < n, i++, lst[[2]] = pls[lst[[1]], lst[[2]]];
lst = Drop[lst, 1]];
lst[[1]]
]; a249779 /@ Range[35] (* Michael De Vlieger, Nov 23 2014 *)
parityAdd[a_, b_]:=Abs[a+b (-1)^(a+b)];
Map[Fold[parityAdd, First[#], Rest[#]]&[Binomial[#, Range[0, #]]]&, Range[0, 35]] (* Peter J. C. Moses, Dec 01 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 05 2014
EXTENSIONS
More terms from Peter J. C. Moses, Nov 05 2014
STATUS
approved