OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^3 * eta(q^6) * eta(q^10) * eta(q^15)^3 / (eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30)) in powers of q.
Euler transform of period 30 sequence [ -3, -2, -2, -2, -2, -2, -3, -2, -2, -2, -3, -2, -3, -2, -4, -2, -3, -2, -3, -2, -2, -2, -3, -2, -2, -2, -2, -2, -3, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 60 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A249371.
EXAMPLE
G.f. = q - 3*q^2 + q^3 + 3*q^4 - q^5 + q^6 - 4*q^7 + q^8 + q^9 - q^10 - q^12 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^3* eta[q^6]*eta[q^10]*eta[q^15]^3/(eta[q^2]*eta[q^3]*eta[q^5]*eta[q^30]), {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Mar 15 2018 *)
PROG
(PARI) {a(n) = my(A); n-=1; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A)^3 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)^3*eta(q^6)*eta(q^10)*eta(q^15)^3/(eta(q^2)*eta(q^3)*eta(q^5)*eta(q^30))) \\ Altug Alkan, Mar 16 2018
(Magma) A := Basis( CuspForms( Gamma0(30), 2), 75); A[1] - 3*A[2] + A[3];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 05 2014
STATUS
approved