login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249781 Expansion of q * f(-q)^2 * f(-q^15)^2 * chi(-q) * chi(-q^15) / (chi(-q^3) * chi(-q^5)) in powers of q where f(), chi() are Ramanujan theta functions. 1
1, -3, 1, 3, -1, 1, -4, 1, 1, -1, 0, -1, 2, 4, -1, -5, 6, -3, -4, 1, -4, 8, 0, -3, 1, 2, 1, -4, -6, 3, 8, 1, 0, -10, 4, 3, 2, -4, 2, 3, -6, 4, -4, -8, -1, 0, 0, 7, 9, -3, 6, -2, -6, 1, 0, 4, -4, 10, 0, -3, -10, -8, -4, 11, -2, -8, -4, 10, 0, -4, 0, 1, 2, 18 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q)^3 * eta(q^6) * eta(q^10) * eta(q^15)^3 / (eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30)) in powers of q.

Euler transform of period 30 sequence [ -3, -2, -2, -2, -2, -2, -3, -2, -2, -2, -3, -2, -3, -2, -4, -2, -3, -2, -3, -2, -2, -2, -3, -2, -2, -2, -2, -2, -3, -4, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 60 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A249371.

EXAMPLE

G.f. = q - 3*q^2 + q^3 + 3*q^4 - q^5 + q^6 - 4*q^7 + q^8 + q^9 - q^10 - q^12 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^3* eta[q^6]*eta[q^10]*eta[q^15]^3/(eta[q^2]*eta[q^3]*eta[q^5]*eta[q^30]), {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Mar 15 2018 *)

PROG

(PARI) {a(n) = my(A); n-=1; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A)^3 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A)), n))};

(PARI) q='q+O('q^99); Vec(eta(q)^3*eta(q^6)*eta(q^10)*eta(q^15)^3/(eta(q^2)*eta(q^3)*eta(q^5)*eta(q^30))) \\ Altug Alkan, Mar 16 2018

(MAGMA) A := Basis( CuspForms( Gamma0(30), 2), 75); A[1] - 3*A[2] + A[3];

CROSSREFS

Cf. A249371.

Sequence in context: A225212 A091088 A335915 * A115627 A128218 A010283

Adjacent sequences:  A249778 A249779 A249780 * A249782 A249783 A249784

KEYWORD

sign

AUTHOR

Michael Somos, Nov 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 20:03 EST 2020. Contains 338812 sequences. (Running on oeis4.)