login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249781
Expansion of q * f(-q)^2 * f(-q^15)^2 * chi(-q) * chi(-q^15) / (chi(-q^3) * chi(-q^5)) in powers of q where f(), chi() are Ramanujan theta functions.
1
1, -3, 1, 3, -1, 1, -4, 1, 1, -1, 0, -1, 2, 4, -1, -5, 6, -3, -4, 1, -4, 8, 0, -3, 1, 2, 1, -4, -6, 3, 8, 1, 0, -10, 4, 3, 2, -4, 2, 3, -6, 4, -4, -8, -1, 0, 0, 7, 9, -3, 6, -2, -6, 1, 0, 4, -4, 10, 0, -3, -10, -8, -4, 11, -2, -8, -4, 10, 0, -4, 0, 1, 2, 18
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^3 * eta(q^6) * eta(q^10) * eta(q^15)^3 / (eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30)) in powers of q.
Euler transform of period 30 sequence [ -3, -2, -2, -2, -2, -2, -3, -2, -2, -2, -3, -2, -3, -2, -4, -2, -3, -2, -3, -2, -2, -2, -3, -2, -2, -2, -2, -2, -3, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 60 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A249371.
EXAMPLE
G.f. = q - 3*q^2 + q^3 + 3*q^4 - q^5 + q^6 - 4*q^7 + q^8 + q^9 - q^10 - q^12 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^3* eta[q^6]*eta[q^10]*eta[q^15]^3/(eta[q^2]*eta[q^3]*eta[q^5]*eta[q^30]), {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Mar 15 2018 *)
PROG
(PARI) {a(n) = my(A); n-=1; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A)^3 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)^3*eta(q^6)*eta(q^10)*eta(q^15)^3/(eta(q^2)*eta(q^3)*eta(q^5)*eta(q^30))) \\ Altug Alkan, Mar 16 2018
(Magma) A := Basis( CuspForms( Gamma0(30), 2), 75); A[1] - 3*A[2] + A[3];
CROSSREFS
Cf. A249371.
Sequence in context: A225212 A091088 A335915 * A342041 A115627 A128218
KEYWORD
sign
AUTHOR
Michael Somos, Nov 05 2014
STATUS
approved