login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249780
Product of lowest and highest prime factors of 2^n-1
2
9, 49, 15, 961, 21, 16129, 51, 511, 93, 2047, 39, 67092481, 381, 1057, 771, 17179607041, 219, 274876858369, 123, 2359, 2049, 8388607, 723, 55831, 24573, 1838599, 381, 486737, 993, 4611686014132420609, 196611, 4196353, 393213, 3810551, 327, 137438953471, 1572861, 849583, 185043
OFFSET
2,1
LINKS
FORMULA
a(n) = A005420(n) * A049479(n)
EXAMPLE
The lowest and higest prime factors of 2^6-1 are 3 and 7, so A(6) = 21
MAPLE
a:= proc(n) local F; F:= numtheory:-factorset(2^n-1); min(F)*max(F) end proc:
seq(a(n), n=2..50); # Robert Israel, Nov 05 2014
MATHEMATICA
plhpf[n_]:=Module[{fn=FactorInteger[n]}, fn[[1, 1]]fn[[-1, 1]]]; Table[plhpf [2^n-1], {n, 2, 40}] (* Harvey P. Dale, May 23 2020 *)
PROG
(PARI) for(n=2, 50, p=2^n-1; print1(factor(p)[1, 1]*factor(p)[#factor(p)[, 1], 1], ", ")) \\ Derek Orr, Nov 05 2014
(Python)
from sympy import primefactors
A249780_list, x = [], 1
for n in range(2, 10):
....x = 2*x + 1
....p = primefactors(x)
....A249780_list.append(max(p)*min(p)) # Chai Wah Wu, Nov 05 2014
CROSSREFS
Sequence in context: A179280 A293095 A283092 * A140891 A072461 A181607
KEYWORD
nonn
AUTHOR
Jacob Vecht, Nov 05 2014
EXTENSIONS
More terms from Derek Orr, Nov 05 2014
STATUS
approved