Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 May 23 2020 13:38:44
%S 9,49,15,961,21,16129,51,511,93,2047,39,67092481,381,1057,771,
%T 17179607041,219,274876858369,123,2359,2049,8388607,723,55831,24573,
%U 1838599,381,486737,993,4611686014132420609,196611,4196353,393213,3810551,327,137438953471,1572861,849583,185043
%N Product of lowest and highest prime factors of 2^n-1
%H Chai Wah Wu, <a href="/A249780/b249780.txt">Table of n, a(n) for n = 2..200</a>
%F a(n) = A005420(n) * A049479(n)
%e The lowest and higest prime factors of 2^6-1 are 3 and 7, so A(6) = 21
%p a:= proc(n) local F; F:= numtheory:-factorset(2^n-1); min(F)*max(F) end proc:
%p seq(a(n),n=2..50); # _Robert Israel_, Nov 05 2014
%t plhpf[n_]:=Module[{fn=FactorInteger[n]},fn[[1,1]]fn[[-1,1]]]; Table[plhpf [2^n-1],{n,2,40}] (* _Harvey P. Dale_, May 23 2020 *)
%o (PARI) for(n=2, 50, p=2^n-1; print1(factor(p)[1, 1]*factor(p)[#factor(p)[, 1], 1], ", ")) \\ _Derek Orr_, Nov 05 2014
%o (Python)
%o from sympy import primefactors
%o A249780_list, x = [], 1
%o for n in range(2,10):
%o ....x = 2*x + 1
%o ....p = primefactors(x)
%o ....A249780_list.append(max(p)*min(p)) # _Chai Wah Wu_, Nov 05 2014
%K nonn
%O 2,1
%A _Jacob Vecht_, Nov 05 2014
%E More terms from _Derek Orr_, Nov 05 2014