login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114875
Decimal expansion of -zeta'(1/2).
4
3, 9, 2, 2, 6, 4, 6, 1, 3, 9, 2, 0, 9, 1, 5, 1, 7, 2, 7, 4, 7, 1, 5, 3, 1, 4, 4, 6, 7, 1, 4, 5, 9, 9, 5, 1, 3, 7, 3, 0, 3, 2, 3, 9, 7, 1, 5, 0, 6, 5, 0, 5, 2, 0, 9, 5, 6, 8, 2, 9, 8, 4, 8, 5, 2, 5, 4, 7, 2, 0, 8, 0, 3, 1, 5, 0, 3, 3, 8, 2, 8, 4, 8, 8, 0, 6, 5, 0, 5, 2, 3, 1, 0, 4, 1, 4, 5, 6, 9, 1, 4, 0
OFFSET
1,1
LINKS
B. K. Choudhury, The Riemann zeta-function and its derivatives, Proc. R. Soc. Lond. A 445 (1995) 477, Table 3.
J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function.
FORMULA
Equals ((2*gamma + Pi + 2*log(8*Pi))*zeta(1/2))/4, where gamma is Euler's constant (A001620).
EXAMPLE
3.92264613920915172747153144671459951373032397150650...
MAPLE
Zeta(1, 1/2) ; evalf(%) ; # R. J. Mathar, May 03 2021
MATHEMATICA
RealDigits[-Zeta'[1/2], 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
PROG
(PARI) -zeta'(1/2) \\ Charles R Greathouse IV, Mar 28 2012
(PARI) -(2*Euler+Pi+2*log(8*Pi))*zeta(1/2)/4 \\ Charles R Greathouse IV, Mar 28 2012
CROSSREFS
Sequence in context: A229099 A021259 A194807 * A275371 A225357 A201664
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 03 2006
STATUS
approved