login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of -zeta'(1/2).
4

%I #23 Jun 15 2023 02:27:09

%S 3,9,2,2,6,4,6,1,3,9,2,0,9,1,5,1,7,2,7,4,7,1,5,3,1,4,4,6,7,1,4,5,9,9,

%T 5,1,3,7,3,0,3,2,3,9,7,1,5,0,6,5,0,5,2,0,9,5,6,8,2,9,8,4,8,5,2,5,4,7,

%U 2,0,8,0,3,1,5,0,3,3,8,2,8,4,8,8,0,6,5,0,5,2,3,1,0,4,1,4,5,6,9,1,4,0

%N Decimal expansion of -zeta'(1/2).

%H B. K. Choudhury, <a href="https://doi.org/10.1098/rspa.1995.0096">The Riemann zeta-function and its derivatives</a>, Proc. R. Soc. Lond. A 445 (1995) 477, Table 3.

%H J. Sondow and E. W. Weisstein, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">MathWorld: Riemann Zeta Function</a>.

%F Equals ((2*gamma + Pi + 2*log(8*Pi))*zeta(1/2))/4, where gamma is Euler's constant (A001620).

%e 3.92264613920915172747153144671459951373032397150650...

%p Zeta(1,1/2) ;evalf(%) ; # _R. J. Mathar_, May 03 2021

%t RealDigits[-Zeta'[1/2], 10, 120][[1]] (* _Amiram Eldar_, Jun 15 2023 *)

%o (PARI) -zeta'(1/2) \\ _Charles R Greathouse IV_, Mar 28 2012

%o (PARI) -(2*Euler+Pi+2*log(8*Pi))*zeta(1/2)/4 \\ _Charles R Greathouse IV_, Mar 28 2012

%Y Cf. A001620, A059750.

%K nonn,cons

%O 1,1

%A _Eric W. Weisstein_, Jan 03 2006