login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.
2

%I #16 Jan 12 2024 11:56:39

%S 1,2,2,9,6,12,64,36,48,108,625,320,360,540,1280,7776,3750,3840,4860,

%T 7680,18750,117649,54432,52500,60480,80640,131250,326592,2097152,

%U 941192,870912,945000,1146880,1575000,2612736,6588344,43046721

%N Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.

%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.43).

%F E.g.f.: -LambertW(-y)/(1+LambertW(-x*y)). - _Vladeta Jovovic_, Jan 26 2006

%F T(n, k) = n*binomial(n-1, k-1)*(k-1)^(k-1)*(n-k+1)^(n-k-1) assuming offset (1, 1). - _Peter Luschny_, Jan 12 2024

%e Triangle starts:

%e [1][ 1]

%e [2][ 2, 2]

%e [3][ 9, 6, 12]

%e [4][ 64, 36, 48, 108]

%e [5][ 625, 320, 360, 540, 1280]

%e [6][ 7776, 3750, 3840, 4860, 7680, 18750]

%e [7][ 117649, 54432, 52500, 60480, 80640, 131250, 326592]

%e [8][2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344]

%o (Julia) # Assuming offset (n=1, k=1).

%o T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k-1)

%o for n in 1:9 (println([n], [T(n, k) for k in 1:n])) end

%o # _Peter Luschny_, Jan 12 2024

%Y T = n * A185390 after proper alignment of offsets.

%Y Columns 1, 2: A000169, A055541.

%Y Main diagonal: A055897.

%Y Row sums give A000312.

%K nonn,tabl

%O 1,2

%A _Christian G. Bower_, Dec 13 2001