login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185390
Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined.
4
1, 1, 1, 3, 2, 4, 16, 9, 12, 27, 125, 64, 72, 108, 256, 1296, 625, 640, 810, 1280, 3125, 16807, 7776, 7500, 8640, 11520, 18750, 46656, 262144, 117649, 108864, 118125, 143360, 196875, 326592, 823543, 4782969, 2097152, 1882384, 1959552, 2240000, 2800000, 3919104, 6588344, 16777216
OFFSET
0,4
COMMENTS
Here, for any x in the domain of definition (f^i)(x) denotes the i-fold composition of f with itself, e.g., (f^2)(x) = f(f(x)). The domain of definition is the set of all values x for which f(x) is defined.
T(n,n) = n^n, the partial functions that are total functions.
T(n,0) = A000272(offset), see comment and link by Dennis P. Walsh.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132, II.21.
FORMULA
E.g.f.: exp(T(x))/(1-T(x*y)) where T(x) is the e.g.f. for A000169.
T(n,k) = binomial(n,k)*k^k*(n-k+1)^(n-k-1). - Geoffrey Critzer, Feb 28 2022
Sum_{k=0..n} k * T(n,k) = A185391(n). - Alois P. Heinz, Jan 12 2024
EXAMPLE
Triangle begins:
1;
1, 1;
3, 2, 4;
16, 9, 12, 27;
125, 64, 72, 108, 256;
1296, 625, 640, 810, 1280, 3125;
16807, 7776, 7500, 8640, 11520, 18750, 46656;
...
MAPLE
T:= (n, k)-> binomial(n, k)*k^k*(n-k+1)^(n-k-1):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 12 2024
MATHEMATICA
nn = 7; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[tx]/(1 - txy), {x, 0, nn}], {x, y}]] // Flatten
PROG
(Julia)
T(n, k) = binomial(n, k)*k^k*(n-k+1)^(n-k-1)
for n in 0:9 (println([T(n, k) for k in 0:n])) end
# Peter Luschny, Jan 12 2024
CROSSREFS
Row sums give A000169(n+1).
T(n,n-1) gives A055897(n).
T(n,n)-T(n,n-1) gives A060226(n).
Sequence in context: A019321 A336435 A279261 * A361422 A369776 A352811
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Feb 09 2012
STATUS
approved