Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #70 Jan 12 2024 21:27:48
%S 1,1,1,3,2,4,16,9,12,27,125,64,72,108,256,1296,625,640,810,1280,3125,
%T 16807,7776,7500,8640,11520,18750,46656,262144,117649,108864,118125,
%U 143360,196875,326592,823543,4782969,2097152,1882384,1959552,2240000,2800000,3919104,6588344,16777216
%N Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined.
%C Here, for any x in the domain of definition (f^i)(x) denotes the i-fold composition of f with itself, e.g., (f^2)(x) = f(f(x)). The domain of definition is the set of all values x for which f(x) is defined.
%C T(n,n) = n^n, the partial functions that are total functions.
%C T(n,0) = A000272(offset), see comment and link by _Dennis P. Walsh_.
%H G. C. Greubel, <a href="/A185390/b185390.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Geoffrey Critzer, <a href="/A185390/a185390.pdf">Distribution of non-functional points under a random partial function</a>
%H Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 132, II.21.
%F E.g.f.: exp(T(x))/(1-T(x*y)) where T(x) is the e.g.f. for A000169.
%F T(n,k) = binomial(n,k)*k^k*(n-k+1)^(n-k-1). - _Geoffrey Critzer_, Feb 28 2022
%F Sum_{k=0..n} k * T(n,k) = A185391(n). - _Alois P. Heinz_, Jan 12 2024
%e Triangle begins:
%e 1;
%e 1, 1;
%e 3, 2, 4;
%e 16, 9, 12, 27;
%e 125, 64, 72, 108, 256;
%e 1296, 625, 640, 810, 1280, 3125;
%e 16807, 7776, 7500, 8640, 11520, 18750, 46656;
%e ...
%p T:= (n, k)-> binomial(n,k)*k^k*(n-k+1)^(n-k-1):
%p seq(seq(T(n,k), k=0..n), n=0..10); # _Alois P. Heinz_, Jan 12 2024
%t nn = 7; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[tx]/(1 - txy), {x, 0, nn}], {x, y}]] // Flatten
%o (Julia)
%o T(n, k) = binomial(n, k)*k^k*(n-k+1)^(n-k-1)
%o for n in 0:9 (println([T(n, k) for k in 0:n])) end
%o # _Peter Luschny_, Jan 12 2024
%Y Row sums give A000169(n+1).
%Y T(n,n-1) gives A055897(n).
%Y T(n,n)-T(n,n-1) gives A060226(n).
%Y Cf. A000272, A000312, A185391.
%K nonn,tabl
%O 0,4
%A _Geoffrey Critzer_, Feb 09 2012