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Definition: Let m ∈ [n] and α ∈ PT n, the semigroup of partial functions on [n].
Then m is a functional point under α if m ∈ M , where M is the unique maximal
subset of [n] such that α|M is a function. Otherwise m is a non-functional point
under α.

Let an,k be the number of partial functions on [n] with exactly k non-functional
points.
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where A(x) is the e.g.f. for the number of rooted labeled trees. By direct counting
we have an,k =
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on [n] is (n+ 1)n.

Let Xn be the discrete random variable that assigns to each partial function on
[n] the number k of its non-functional points, 0 ≤ k ≤ n.
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and we have the identity
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It is perhaps surprising that there is a non-zero limiting distribution. From the
distribution, we see that almost all the points in [n] are functional points under a
randomly selected α ∈ PT n. In particular, no matter how big n gets, the proba-
bility that a random partial function has j or fewer non-functional points is
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P (X ≤ j) =
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For example, in the case that j = 10 the probability is about 76%.


