Probability distribution of non-functional points in a random partial functions .

Geoffrey Critzer

Definition: Let $m \in [n]$ and $\alpha \in \mathcal{PT}_n$, the semigroup of partial functions on $[n]$. Then m is a functional point under α if $m \in M$, where M is the unique maximal subset of [n] such that $\alpha|_M$ is a function. Otherwise m is a non-functional point under α .

Let $a_{n,k}$ be the number of partial functions on [n] with exactly k non-functional points.

$$
\sum_{n\geq 0} a_{n,k} y^k \frac{x^n}{n!} = \exp(\log(\frac{1}{1 - A(x)})) \exp(A(yx))
$$

where $A(x)$ is the e.g.f. for the number of rooted labeled trees. By direct counting we have $a_{n,k} = {n \choose k} (n-k)^{n-k} (k+1)^{k-1}$. Note that the number of partial functions on [n] is $(n+1)^n$.

Let X_n be the discrete random variable that assigns to each partial function on [n] the number k of its non-functional points, $0 \leq k \leq n$.

$$
P(X_n = k) = \frac{\binom{n}{k}(n-k)^{n-k}(k+1)^{k-1}}{(n+1)^n}
$$

$$
\lim_{n \to \infty} P(X_n = k) = \frac{(k+1)^{k-1}}{e^{k+1}k!}
$$

and we have the identity

$$
\sum_{k\geq 0} \frac{(k+1)^{k-1}}{e^{k+1}k!} = 1
$$

It is perhaps surprising that there is a non-zero limiting distribution. From the distribution, we see that almost all the points in $[n]$ are functional points under a randomly selected $\alpha \in \mathcal{PT}_n$. In particular, no matter how big *n* gets, the probability that a random partial function has j or fewer non-functional points is

$$
P(X \le j) = \sum_{k=0}^{j} \frac{(k+1)^{k-1}}{e^{k+1}k!}
$$

For example, in the case that $j = 10$ the probability is about 76%.