login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352811 Table read by rows: row n gives triples (u, k, m) such that k and m are the smallest integers that respectively satisfy A352810(n) = u = A000203(k) = A024816(m). 3
3, 2, 4, 20, 19, 7, 32, 21, 9, 54, 34, 11, 96, 42, 15, 132, 86, 18, 168, 60, 20, 217, 100, 22, 240, 114, 24, 252, 96, 23, 294, 164, 25, 338, 337, 27, 350, 349, 28, 464, 463, 31, 465, 200, 32, 582, 386, 35, 819, 288, 41, 1052, 1051, 48, 1080, 408, 47, 1182, 1181, 50 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A000203 is the function sigma sum of divisors, while A024816 is the antisigma function, sum of the numbers less than n that do not divide n.

LINKS

Table of n, a(n) for n=1..60.

EXAMPLE

The table begins:

  ------------------------------------------------------------------

  | row |      u =        | smallest k with  |    smallest m with  |

  |  n  |   A352810(n)    |  A000203(k) = u  |     A024816(m) = u  |

  ------------------------------------------------------------------

    n=1 :         3,                   2,                   4;

    n=2 :        20,                  19,                   7;

    n=3 :        32,                  21,                   9;

    n=4 :        54,                  34,                  11;

    n=5 :        96,                  42,                  15;

    n=6 :       132,                  86,                  18;

  ...................................................................

3rd row is (32, 21, 9) because A352810(3) = 32, sigma(21) = sigma(31) = 32 and antisigma(9) = 2+4+5+6+7+8 = 32, hence 21 and 9 are respectively the smallest integers k and m such that sigma(k) = antisigma(m) = 32.

5th row is (96, 42, 15) because A352810(5) = 96 and 42 and 15 are respectively the smallest integers k and m such that sigma(k) = antisigma(m) = 96.

MATHEMATICA

m = 2000; r = Range[m]; s = DivisorSigma[1, r]; as = r*(r + 1)/2 - s; i = Select[Intersection[s, as], # <= m &]; Flatten @ Transpose @ Join[{i}, Map[Flatten[Table[FirstPosition[#, i[[k]]], {k, 1, Length[i]}]] &, {s, as}]] (* Amiram Eldar, Apr 12 2022 *)

CROSSREFS

Cf. A000203, A002191, A024816, A076617, A231365, A352810.

Sequence in context: A336435 A279261 A185390 * A019116 A213611 A355776

Adjacent sequences:  A352808 A352809 A352810 * A352812 A352813 A352814

KEYWORD

nonn,tabf

AUTHOR

Bernard Schott, Apr 12 2022

EXTENSIONS

More terms from Amiram Eldar, Apr 13 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 16:00 EDT 2022. Contains 355994 sequences. (Running on oeis4.)