login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279261
Expansion of q^(-1/3) * eta(q)^3 * eta(q^3)^3 / eta(q^2)^2 in powers of q.
1
1, -3, 2, -4, 14, -11, 6, -20, 21, -14, 10, -16, 38, -20, 14, -40, 43, -42, 16, -28, 62, -43, 22, -40, 74, -42, 26, -40, 64, -68, 28, -80, 98, -63, 34, -52, 110, -62, 32, -100, 133, -70, 42, -56, 108, -80, 46, -120, 112, -114, 50, -72, 158, -84, 54, -140, 183
OFFSET
0,2
LINKS
FORMULA
Euler transform of period 6 sequence [ -3, -1, -6, -1, -3, -4, ...].
3 * a(n) = A260301(3*n + 1).
EXAMPLE
G.f. = 1 - 3*x + 2*x^2 - 4*x^3 + 14*x^4 - 11*x^5 + 6*x^6 - 20*x^7 + ...
G.f. = q - 3*q^4 + 2*q^7 - 4*q^10 + 14*q^13 - 11*q^16 + 6*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^3]^3 / QPochhammer[ x^2]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^3 + A)^3 / eta(x^2 + A)^2, n))};
CROSSREFS
Cf. A260301.
Sequence in context: A137824 A019321 A336435 * A185390 A361422 A369776
KEYWORD
sign
AUTHOR
Michael Somos, Dec 08 2016
STATUS
approved