

A137824


Index at which A137823(n) occurs first in A137822 (gaps in numbers m such that 3  sum( Catalan(k), k=1..2m)).


7



1, 3, 2, 4, 12, 8, 16, 48, 32, 64, 192, 128, 256, 768, 512, 1024, 3072, 2048, 4096, 12288, 8192, 16384, 49152, 32768, 65536, 196608, 131072, 262144, 786432, 524288, 1048576, 3145728, 2097152, 4194304, 12582912, 8388608, 16777216, 50331648
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Other characterization of the sequence: concatenate pattern (1,3,2) multiplying it by 4 after each concatenation step. Or: Start with 1,3,2, then iteratively append the whole sequence obtained so far multiplied by 4^(length of the sequence divided by 3)
See A137822 and A137823 for more comments and formulas.


LINKS

Table of n, a(n) for n=1..38.
Index entries for linear recurrences with constant coefficients, signature (0,0,4).


FORMULA

If n=2 (mod 3) then a(n) = 3*2^[2(n1)/3]; else a(n) = 2^[(2(n1)/3].
a(n) = 4*a(n3) for n>3. G.f.: x*(1+x)*(1+2*x)/(14*x^3). [Colin Barker, Aug 19 2012]


PROG

(PARI) A137824(n) = if( n%3==2, 3, 1)<<(2*(n1)\3)
(PARI) A137824(n) = for( i=1, #A137822, A137822[i]==A137823[n] & return(i))
(PARI) a=[1, 3, 2]; for( i=1, 5, a=concat( a, 4^(#a/3)*a )); a


CROSSREFS

Cf. A107755, A122983, A137821A137823.
Sequence in context: A319103 A332647 A290333 * A019321 A336435 A279261
Adjacent sequences: A137821 A137822 A137823 * A137825 A137826 A137827


KEYWORD

nonn,easy


AUTHOR

M. F. Hasler, May 15 2008


STATUS

approved



