

A137822


First differences of A137821 (numbers such that sum( Catalan(k), k=1..2n) = 0 (mod 3)).


8



1, 3, 2, 7, 2, 3, 1, 21, 2, 3, 1, 8, 1, 3, 2, 61, 2, 3, 1, 8, 1, 3, 2, 21, 1, 3, 2, 7, 2, 3, 1, 183, 2, 3, 1, 8, 1, 3, 2, 21, 1, 3, 2, 7, 2, 3, 1, 62, 1, 3, 2, 7, 2, 3, 1, 21, 2, 3, 1, 8, 1, 3, 2, 547, 2, 3, 1, 8, 1, 3, 2, 21, 1, 3, 2, 7, 2, 3, 1, 62, 1, 3, 2, 7, 2, 3, 1, 21, 2, 3, 1, 8, 1, 3, 2, 183, 1, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For the initial term, we use A137821(0)=0 (cf. formula).
Sequence A122983 lists record values of this one, which occur at index 2^j (cf. formula). The fact that these values roughly grow by a factor 3 is explained by the fact that these values are given as the sum of all preceding terms (up to +1 or +2 according to the parity of j, cf. formula).
The only values occurring in this sequence are { 1, 2, 3, 7, 8, 21, 61, 62, 183, 547, 548, 1641,... } = A137823, consisting of the record values a(2^j) and, for every other one of these (i.e. for even j), its successor a(2^j)+1, occurring first as a(3*2^j).
The remarkably simple sequence A137824 (= 1,3,2, 4,12,8,...: pattern 1,3,2 multiplied by powers of 4) gives the index at which the value A137823(m) first occurs.  M. F. Hasler, Mar 15 2008
The PARI code given here (function A137822(n)) allows one to calculate hundreds of terms of A107755 in a few microseconds.  M. F. Hasler, Mar 15 2008


LINKS

M. F. Hasler, Table of n, a(n) for n = 1..499.


FORMULA

a(m) = A137821(m)A137821(m1), A137821(m)=sum( a(j), j=1..m).
a(2^j) = A122983(j1) = A137821(2^j1) + 1 (resp. +2) for j even (resp. odd).
a(3*2^j) = a(2^j) (resp. = a(2^j)+1) for j odd (resp. j even).


EXAMPLE

Record values are a(1)=1, a(2)=3, a(4)=7, a(8)=21, a(16)=61, ...
Apart from these values, the only other values occuring in the sequence are:
2=a(1)+1=a(3*1), 8=a(4)+1=a(3*4), 62=a(16)+1=a(3*16), ...


PROG

(PARI) A137822 = D( A137821 ) /* where D(v)=vector(#v1, i, v[i+1]v[i]) or D(v)=vecextract(v, "^1")vecextract(v, "^1") */
(PARI) n=0; A137822=vector(499, i, { o=n; if( bitand(i, i1), while(n++ && s+=binomial(4*n2, 2*n1)/(2*n)*(10*n1)/(2*n+1), ), s=Mod(0, 3); n=2*n+1+log(i+.5)\log(2)%2 ); no})
(PARI) A137822(n)= local( L=log(n+.5)\log(2) ); while( n>0  ((n+=2^L) && L=log(n+.5)\log(2)), (n=2^L)  return( 3^(L+1)\4+1 ); (n=2^(L1))  return( 3^L\4+1+L%2 ); n<0 && n+=2<<L); 1 \\  M. F. Hasler, Mar 15 2008


CROSSREFS

Cf. A000108, A107755, A137821A137824.
Cf. A122983 (record values of this).
Sequence in context: A085587 A326607 A071189 * A300845 A302714 A193574
Adjacent sequences: A137819 A137820 A137821 * A137823 A137824 A137825


KEYWORD

nonn


AUTHOR

M. F. Hasler, Feb 25 2008, revised Mar 15 2008


STATUS

approved



