OFFSET
0,1
COMMENTS
a(n) is the number of ways to tile a bracelet of length n with black trominos, and black or white squares.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Washington & Lee University (2021).
Helmut Prodinger, On third-order Pell polynomials, arXiv:2011.04388 [math.NT], 2020.
Index entries for linear recurrences with constant coefficients, signature (2,0,1).
FORMULA
a(n) = 2*a(n-1) + a(n-3).
a(n) = w1^n + w2^n + w3^n where w1,w2,w3 are the three roots of x^3-2x^2-1=0.
For n>2, a(n) = round(w1^n) for w1 the single real root of x^3-2x^2-1=0.
G.f.: (3 - 4*x) / (1 - 2*x - x^3). - Colin Barker, Feb 18 2020
a(n) = (5*b(n) - b(n-1) - b(n-2))/2 where b(n) = A052980(n). - Greg Dresden, Mar 10 2020
a(n) = A080204(n) + 1. - Greg Dresden, May 27 2020
MATHEMATICA
LinearRecurrence[{2, 0, 1}, {3, 2, 4}, 50]
PROG
(Magma) a:=[3, 2, 4]; [n le 3 select a[n] else 2*Self(n-1)+Self(n-3):n in [1..33]]; // Marius A. Burtea, Feb 18 2020
(PARI) Vec((3 - 4*x) / (1 - 2*x - x^3) + O(x^30)) \\ Colin Barker, Feb 18 2020
(PARI) polsym(x^3-2*x^2-1, 44) \\ Joerg Arndt, May 28 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Greg Dresden, Feb 18 2020
STATUS
approved