login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332647
a(n) = 2*a(n-1) + a(n-3) with a(0) = 3, a(1) = 2, a(2) = 4.
2
3, 2, 4, 11, 24, 52, 115, 254, 560, 1235, 2724, 6008, 13251, 29226, 64460, 142171, 313568, 691596, 1525363, 3364294, 7420184, 16365731, 36095756, 79611696, 175589123, 387274002, 854159700, 1883908523, 4155091048, 9164341796, 20212592115, 44580275278, 98324892352
OFFSET
0,1
COMMENTS
a(n) is the number of ways to tile a bracelet of length n with black trominos, and black or white squares.
LINKS
Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Washington & Lee University (2021).
Helmut Prodinger, On third-order Pell polynomials, arXiv:2011.04388 [math.NT], 2020.
FORMULA
a(n) = 2*a(n-1) + a(n-3).
a(n) = w1^n + w2^n + w3^n where w1,w2,w3 are the three roots of x^3-2x^2-1=0.
For n>2, a(n) = round(w1^n) for w1 the single real root of x^3-2x^2-1=0.
G.f.: (3 - 4*x) / (1 - 2*x - x^3). - Colin Barker, Feb 18 2020
a(n) = A008998(n) + 2*A008998(n-3) = 3*A008998(n) - 4*A008998(n-1).
a(n) = (5*b(n) - b(n-1) - b(n-2))/2 where b(n) = A052980(n). - Greg Dresden, Mar 10 2020
a(n) = A080204(n) + 1. - Greg Dresden, May 27 2020
MATHEMATICA
LinearRecurrence[{2, 0, 1}, {3, 2, 4}, 50]
PROG
(Magma) a:=[3, 2, 4]; [n le 3 select a[n] else 2*Self(n-1)+Self(n-3):n in [1..33]]; // Marius A. Burtea, Feb 18 2020
(PARI) Vec((3 - 4*x) / (1 - 2*x - x^3) + O(x^30)) \\ Colin Barker, Feb 18 2020
(PARI) polsym(x^3-2*x^2-1, 44) \\ Joerg Arndt, May 28 2020
CROSSREFS
Cf. A008998, A052980. Equals one more than A080204.
Sequence in context: A296099 A349853 A319103 * A290333 A137824 A019321
KEYWORD
easy,nonn
AUTHOR
Greg Dresden, Feb 18 2020
STATUS
approved