login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332646
Numbers m with a divisor d such that d^tau(d) = m.
1
1, 4, 9, 25, 49, 64, 121, 169, 289, 361, 529, 729, 841, 961, 1296, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4096, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10000, 10201, 10609, 11449, 11881, 12769, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569
OFFSET
1,2
COMMENTS
Possible values for function n^tau(n) (A062758).
Supersequence of A189991 (numbers with prime factorization p^4*q^4; d = pq), A001248 (numbers with prime factorization p^2; d = p), A030516 (numbers with prime factorization p^6; d = p^2) and A280076.
EXAMPLE
64 is a term because 4^3 = 64; 4 divides 64; tau(4) = 3.
MATHEMATICA
divPowerQ[n_] := AnyTrue[Divisors[n], #^DivisorSigma[0, #] == n &]; Select[Range[27000], divPowerQ] (* Amiram Eldar, Feb 18 2020 *)
PROG
(Magma) [n: n in [1..100000] | #[d: d in Divisors(n) | d^NumberOfDivisors(d) eq n] ge 1]
(PARI) isok(m) = fordiv(m, d, if (d^numdiv(d) == m, return (1))); \\ Michel Marcus, Feb 18 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 18 2020
STATUS
approved