login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m with a divisor d such that d^tau(d) = m.
1

%I #12 Sep 08 2022 08:46:25

%S 1,4,9,25,49,64,121,169,289,361,529,729,841,961,1296,1369,1681,1849,

%T 2209,2809,3481,3721,4096,4489,5041,5329,6241,6889,7921,9409,10000,

%U 10201,10609,11449,11881,12769,15625,16129,17161,18769,19321,22201,22801,24649,26569

%N Numbers m with a divisor d such that d^tau(d) = m.

%C Possible values for function n^tau(n) (A062758).

%C Supersequence of A189991 (numbers with prime factorization p^4*q^4; d = pq), A001248 (numbers with prime factorization p^2; d = p), A030516 (numbers with prime factorization p^6; d = p^2) and A280076.

%e 64 is a term because 4^3 = 64; 4 divides 64; tau(4) = 3.

%t divPowerQ[n_] := AnyTrue[Divisors[n], #^DivisorSigma[0, #] == n &]; Select[Range[27000], divPowerQ] (* _Amiram Eldar_, Feb 18 2020 *)

%o (Magma) [n: n in [1..100000] | #[d: d in Divisors(n) | d^NumberOfDivisors(d) eq n] ge 1]

%o (PARI) isok(m) = fordiv(m, d, if (d^numdiv(d) == m, return (1))); \\ _Michel Marcus_, Feb 18 2020

%Y Cf. A000005, A001248, A030516, A062758, A189991, A280076.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Feb 18 2020