

A279260


Numbers which are cyclops palindromic in their binary reflected Gray code representation.


1



0, 6, 18, 90, 330, 1386, 5418, 21930, 87210, 349866, 1397418, 5593770, 22366890, 89483946, 357903018, 1431677610, 5726579370, 22906579626, 91625794218, 366504225450, 1466014804650, 5864063412906, 23456245263018, 93824997829290, 375299957762730, 1501199898159786, 6004799458421418
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Cyclops palindromic numbers in base 2 are numbers with middle bit 0, having equal number of 1's on both side of the 0. There is a single 0 bit in the middle and the total number of bits is odd. The middle '0' represents the eye of a cyclops.
a(n) mod 6 = 0.


LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..1000
Indranil Ghosh, Proof of 6{(2*(1+((2)^n)(2^(2*n+1))))/3}
Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, (2015)


FORMULA

a(n) = (2*(1+((2)^n)(2^(2*n+1))))/3.


EXAMPLE

90 is in the sequence because the binary reflected Gray code representation of 90 is '1110111' which is a cyclops palindromic binary number.


PROG

(Python)
def a(n):
....return (2*(1+((2)**n)(2**(2*n+1))))/3
(PARI) a(n)=(2*(1+((2)^n)(2^(2*n+1))))/3 \\ Charles R Greathouse IV, Jun 29 2018


CROSSREFS

Cf. A014550, A129868, A134808, A138148.
Sequence in context: A239420 A219590 A260664 * A294471 A194995 A104970
Adjacent sequences: A279257 A279258 A279259 * A279261 A279262 A279263


KEYWORD

nonn,base,easy


AUTHOR

Indranil Ghosh, Jan 17 2017


STATUS

approved



