login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A279260
Numbers which are cyclops palindromic in their binary reflected Gray code representation.
1
0, 6, 18, 90, 330, 1386, 5418, 21930, 87210, 349866, 1397418, 5593770, 22366890, 89483946, 357903018, 1431677610, 5726579370, 22906579626, 91625794218, 366504225450, 1466014804650, 5864063412906, 23456245263018, 93824997829290, 375299957762730, 1501199898159786, 6004799458421418
OFFSET
0,2
COMMENTS
Cyclops palindromic numbers in base 2 are numbers with middle bit 0, having equal number of 1's on both side of the 0. There is a single 0 bit in the middle and the total number of bits is odd. The middle '0' represents the eye of a cyclops.
a(n) mod 6 = 0.
LINKS
Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, (2015)
FORMULA
a(n) = (-2*(1+((-2)^n)-(2^(2*n+1))))/3.
EXAMPLE
90 is in the sequence because the binary reflected Gray code representation of 90 is '1110111' which is a cyclops palindromic binary number.
PROG
(Python)
def a(n):
....return (-2*(1+((-2)**n)-(2**(2*n+1))))/3
(PARI) a(n)=(-2*(1+((-2)^n)-(2^(2*n+1))))/3 \\ Charles R Greathouse IV, Jun 29 2018
CROSSREFS
Partial sums of A071930.
Sequence in context: A239420 A219590 A260664 * A379178 A371987 A294471
KEYWORD
nonn,base,easy
AUTHOR
Indranil Ghosh, Jan 17 2017
STATUS
approved