The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129868 Binary palindromic numbers with only one 0 bit. 19
0, 5, 27, 119, 495, 2015, 8127, 32639, 130815, 523775, 2096127, 8386559, 33550335, 134209535, 536854527, 2147450879, 8589869055, 34359607295, 137438691327, 549755289599, 2199022206975, 8796090925055, 35184367894527, 140737479966719, 562949936644095 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Binary expansion is 0, 101, 11011, 1110111, 111101111, ... (see A138148).
9 + 8a(n) = s^2 is a perfect square with s = 2^(n + 2) -1 = 3, 7, 15, 31, 63, ...
Numbers with middle bit 0, that have only one bit 0, and the total number of bits is odd.
The fractional part of the base 2 logarithm of a(n) approaches 1 as n approaches infinity.
Also called binary cyclops numbers.
Last digit of the decimal representation follows the pattern 5, 7, 9, 5, 5, 7, 9, 5, ... . - Alex Ratushnyak, Dec 08 2012
LINKS
Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, video (2015)
FORMULA
a(n) = 2^(2n + 1) - 2^n - 1 = 2*4^n - 2^n - 1 = (2^n - 1)(2*2^n + 1).
G.f.: x*(8*x-5)/((x-1)*(2*x-1)*(4*x-1)).
Recurrences:
a(n) = (1/2)*(7 + 8*a(n - 1) + sqrt(9 + 8*a(n - 1))), a(0) = 0;
a(n) = 6*a(n - 1) - 8*a(n - 2) - 3, a(0) = 0, a(1) = 5;
a(n) = 7*a(n - 1) - 14*a(n - 2) + 8*a(n - 3), a(0) = 0, a(1) = 5, a(2) = 27.
a(n) = A006516(n+1) - 1.
MAPLE
A129868:=n->2^(2*n + 1) - 2^n - 1: seq(A129868(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2015
MATHEMATICA
(* 1st *) FromDigits[ #, 2]&/@NestList[Append[Prepend[ #, 1], 1]&, {0}, 25] (* 2nd *) NestList[(1/2)(7 + 8# + Sqrt[9 + 8# ])&, 0, 22] (* both of these are from Zak Seidov *)
f[n_] := 2^(2n + 1) - 2^n - 1; Table[f@n, {n, 0, 22}] (* Robert G. Wilson v, Aug 24 2007 *)
Table[EulerE[2, 2^n], {n, 1, 60}]/2 - 1 (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
(* After running the program in A134808 *) Select[Range[0, 2^16 - 1], cyclopsQ[#, 2] &] (* Alonso del Arte, Dec 17 2010 *)
LinearRecurrence[{7, -14, 8}, {0, 5, 27}, 30] (* Vincenzo Librandi, Dec 08 2015 *)
PROG
(Magma) [2^(2*n+1)-2^n-1: n in [0..25]]; // Vincenzo Librandi, Dec 08 2015
(PARI) concat(0, Vec(x*(5-8*x)/(1-7*x+14*x^2-8*x^3) + O(x^100))) \\ Altug Alkan, Dec 08 2015
(Python)
def A129868(n): return ((m:=1<<n)-1)*((m<<1)+1) # Chai Wah Wu, Mar 19 2024
CROSSREFS
Base 10 analog is A134808.
Binary palindromic numbers, including repunits (or Mersenne numbers A000225) are in A006995. The sequence of binary pandigital (having both 0's and 1's) palindromic numbers begins 5, 9, 17, 21, 27, 33, 45, 51, 65, 73, ...
Sequence in context: A226315 A201436 A202508 * A069993 A249995 A009027
KEYWORD
nonn,base,easy
AUTHOR
Zak Seidov, May 24 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)