login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069993
a(n) = 2^(2n+1)*Sum_{k=1..2*n} binomial(2n+1,k)*Bernoulli(k)/2^k.
1
5, 27, 121, 503, 2037, 8179, 32753, 131055, 524269, 2097131, 8388585, 33554407, 134217701, 536870883, 2147483617, 8589934559, 34359738333, 137438953435, 549755813849, 2199023255511, 8796093022165, 35184372088787
OFFSET
1,1
FORMULA
From Rolf Pleisch, Aug 09 2009: (Start)
a(n) = 2(4^n-n) - 1;
a(n) = 2*A024037(n) - 1.
(End)
From Colin Barker, May 30 2020: (Start)
G.f.: x*(5 - 3*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)).
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3) for n>3.
(End)
MATHEMATICA
LinearRecurrence[{6, -9, 4}, {5, 27, 121}, 30] (* Harvey P. Dale, Jul 03 2021 *)
PROG
(PARI) for(n=1, 30, print1(-2*4^n*sum(i=1, 2*n+1, binomial(2*n+1, i)*bernfrac(i)/2^i), ", "))
(PARI) Vec(x*(5 - 3*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)) + O(x^25)) \\ Colin Barker, May 30 2020
(Magma) [2*(4^n-n)-1: n in [1..30]]; // Vincenzo Librandi, Jul 02 2011
CROSSREFS
Cf. A024037. - Rolf Pleisch, Aug 09 2009
Sequence in context: A201436 A202508 A129868 * A249995 A009027 A275540
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved