Proof of 6|(-2/3)*{1+(-2)^n-2^(2*n+1)} by method of induction ----Indranil Ghosh, 17th January, 2017. This problem can be written as: Proof of 9|-{1+(-2)^n-2^(2*n+1)} by induction =>Proof of 9|{2^(2*n+1)-(-2)^n-1}........................................(1) Step 1: For n=1, (1) is true, since 2^(2*1+1)-(-2)^1-1 =2^3-(-2)-1 =9. And, 9|9. Step 2: Suppose (1) is true for some n = k >= 1, i.e., 9|{2^(2*k+1)-(-2)^k-1}. Step 3: Prove that (1) is true for n = k+1, i.e., 9|[2^{2*(k+1)+1}-(-2)^(k+1)-1] We have, 2^{2*(k+1)+1}-(-2)^(k+1)-1 = 2^(2*k+3)-(-2)^(k+1)-1 = 4*{2^(2*k+1)}-(-2)*(-2)^k-1 = {2^(2*k+1)-(-2)^k-1}*4 + {6*(-2)^k+3} = a1 + a2 [a1 = {2^(2*k+1)-(-2)^k-1}*4 and a2 = {6*(-2)^k+3}] Now, 9|a1 [As evident from step 2] For a2, we again apply the method of induction to proof that 9|a2. Proof of 9|6*(-2)^k+3..................................................(2) Step 4: For k = 1 (2) is true since, 6*(-2)^1+3 = -12+3 = -9 And 9|-9 Step 5: Suppose (2) is true for k = m>=1 i.e., 9|6*(-2)^m+3 Step 6: Prove that (2) is true for k=m+1 i.e., 9|6*(-2)^(m+1)+3 We have 6*(-2)^(m+1)+3 = 6*{(-2)^m}*(-2)+3 = -12*(-2)^m+3 = {6*(-2)^m+3]*(-2)+9 And 9|{6*(-2)^m+3]*(-2)+9 [As evident from step 5] So, 9|a1 and 9|a2 => 9|(a1+a2) => 9|[2^{2*(k+1)+1}-(-2)^(k+1)-1] (Proved) So, 9|{2^(2*n+1)-(-2)^n-1} =>9|-{1+(-2)^n-2^(2*n+1)} =>6|(-2/3)*{1+(-2)^n-2^(2*n+1)} (Proved)