|
|
A185391
|
|
a(n) = Sum_{k=0..n} A185390(n,k) * k.
|
|
2
|
|
|
0, 1, 10, 114, 1556, 25080, 468462, 9971920, 238551336, 6339784320, 185391061010, 5917263922944, 204735466350780, 7633925334590464, 305188474579874550, 13023103577435351040, 590850477768105474128, 28401410966866912051200, 1441935117039649859464986
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The total number of elements, x in the domain of definition of all partial functions on n labeled objects such that for all i in {1,2,3,...} (f^i)(x) is defined.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
nn=20; tx=Sum[n^(n-1) x^n/n!, {n, 1, nn}]; txy=Sum[n^(n-1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, #>0&];
D[Range[0, nn]! CoefficientList[Series[Exp[tx]/(1-txy), {x, 0, nn}], x], y]/.y->1
|
|
PROG
|
(PARI) {a(n) = (n+1)^(n+1)-sum(k=1, n+1, binomial(n+1, k)*k^k*(n+1-k)^(n+1-k))/(n+1)} \\ Seiichi Manyama, Jun 01 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|