The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185391 a(n) = Sum_{k=0..n} A185390(n,k) * k. 2
 0, 1, 10, 114, 1556, 25080, 468462, 9971920, 238551336, 6339784320, 185391061010, 5917263922944, 204735466350780, 7633925334590464, 305188474579874550, 13023103577435351040, 590850477768105474128, 28401410966866912051200, 1441935117039649859464986 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The total number of elements, x in the domain of definition of all partial functions on n labeled objects such that for all i in {1,2,3,...} (f^i)(x) is defined. LINKS G. C. Greubel, Table of n, a(n) for n = 0..385 FORMULA a(n) = (n+1)^(n+1) - A001865(n+1). - Seiichi Manyama, Jun 01 2019 MATHEMATICA nn=20; tx=Sum[n^(n-1) x^n/n!, {n, 1, nn}]; txy=Sum[n^(n-1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, #>0&]; D[Range[0, nn]! CoefficientList[Series[Exp[tx]/(1-txy), {x, 0, nn}], x], y]/.y->1 PROG (PARI) {a(n) = (n+1)^(n+1)-sum(k=1, n+1, binomial(n+1, k)*k^k*(n+1-k)^(n+1-k))/(n+1)} \\ Seiichi Manyama, Jun 01 2019 CROSSREFS Cf. A000312, A001865, A076728, A185390. Sequence in context: A176824 A196983 A199908 * A104520 A138845 A079678 Adjacent sequences: A185388 A185389 A185390 * A185392 A185393 A185394 KEYWORD nonn AUTHOR Geoffrey Critzer, Feb 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:48 EST 2023. Contains 367691 sequences. (Running on oeis4.)