login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336975
Expansion of Product_{k>=1} 1/(1 - x^k * (k + x)).
6
1, 1, 4, 9, 22, 47, 107, 221, 468, 953, 1932, 3814, 7560, 14625, 28192, 53757, 101827, 190907, 356362, 659716, 1215314, 2224968, 4053914, 7346367, 13260001, 23822114, 42629786, 75991017, 134991954, 238948942, 421656911, 741750026, 1301116634, 2275985891, 3971022904
OFFSET
0,3
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (k/d + x)^d / d).
a(n) ~ c * n * phi^(n+1) / 5, where c = Product_{k>=3} 1/(1 - 1/phi^k*(k + 1/phi)) = 167.5661037860673786430316975350024960626825333609486463342... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 06 2021
MATHEMATICA
m = 34; CoefficientList[Series[Product[1/(1 - x^k*(k + x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(k+x)))
(PARI) N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (k/d+x)^d/d))))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 09 2020
STATUS
approved