login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253289
G.f.: Product_{k>=1} 1/(1-x^k)^(2*k-1).
10
1, 1, 4, 9, 22, 46, 103, 208, 431, 849, 1671, 3195, 6079, 11321, 20937, 38146, 68931, 123121, 218212, 383019, 667425, 1153544, 1980268, 3375394, 5717773, 9624541, 16108496, 26807662, 44379189, 73089219, 119789926, 195401275, 317309532, 513025167, 826000651
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n where there are 2*k-1 sorts of parts k. - Joerg Arndt, Aug 15 2020
LINKS
FORMULA
a(n) ~ 2^(1/9) * Zeta(3)^(1/18) * exp(1/6 - Pi^4/(864*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 3^(1/2) * n^(5/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018
Euler transform of A005408 (the odd numbers). - Georg Fischer, Aug 15 2020
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n-1): seq(a(n), n=0..50); # after Alois P. Heinz
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
(* Using EulerTransforms from 'Transforms'. *)
Prepend[EulerTransform[Table[2k + 1, {k, 0, 20}]], 1] (* Peter Luschny, Aug 15 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved