login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120844
Number of multi-trace BPS operators for the quiver gauge theory of the orbifold C^2/Z_2.
6
1, 3, 11, 32, 90, 231, 576, 1363, 3141, 7003, 15261, 32468, 67788, 138892, 280103, 556302, 1089991, 2108332, 4030649, 7620671, 14261450, 26431346, 48544170, 88393064, 159654022, 286149924, 509137464, 899603036, 1579014769
OFFSET
0,2
LINKS
S. Benvenuti, B. Feng, A. Hanany and Y. H. He, Counting BPS operators in gauge theories: Quivers, syzygies and plethystics, arXiv:hep-th/0608050.
FORMULA
G.f.: exp( Sum_{n>0} (3*x^n - x^(2*n)) / (n*(1-x^n)^2) ).
a(n) ~ Zeta(3)^(7/18) * exp(1/6 - Pi^4/(864*Zeta(3)) + Pi^2 * n^(1/3)/(3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(2/9) * 3^(1/2) * Pi * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 07 2015
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 06 2015 after Alois P. Heinz
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amihay Hanany (hanany(AT)mit.edu), Aug 25 2006
STATUS
approved