login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120847
Klarner-Rado primes. Primes in A005658.
1
2, 5, 17, 29, 47, 53, 83, 89, 101, 173, 191, 251, 263, 269, 281, 317, 431, 467, 479, 521, 587, 659, 809, 857, 911, 929, 947, 953, 983, 1019, 1091, 1163, 1307, 1439, 1451, 1493, 1559, 1601, 1613, 1667, 1811, 1847, 1871, 1901, 1979, 2027, 2063, 2099, 2207, 2243
OFFSET
1,1
LINKS
R. J. Mathar and Robert Israel, Table of n, a(n) for n = 1..7948 (1..493 from Mathar)
FORMULA
A000040 INTERSECTION {sequence starting with 1 and such that if n appears so do 2n, 3n+2, 6n+3}.
MAPLE
N:= 3000: # to get all terms <= N
A:= Vector(N):
A[1]:= 1:
todo:= {1}:
while todo <> {} do
x:= todo[1];
todo:= todo[2..-1];
Y:= select(t -> (t <= N and A[t] = 0), [2*x, 3*x+2, 6*x+3]);
A[Y]:= 1;
todo:= todo union convert(Y, set);
od:
select(t -> A[t]=1 and isprime(t), [$1..N]); # Robert Israel, Jun 17 2015
PROG
(C++) #include <stdio.h> #include <iostream> #include <set> using namespace std ; bool isprime(const int n) { for(int i=2; i*i <= n ; i++) if( n %i == 0) return false ; return true ; } int main(int argc, char *argv[]) { const int anmax= 40000 ; set<int> a ; a.insert(1) ; for(int i=0; i< anmax ; i++) { if( a.count(i) ) { if( 2*i<=anmax) a.insert(2*i) ; if( 3*i+2 <= anmax) a.insert(3*i+2) ; if( 6*i+3 <= anmax) a.insert(6*i+3) ; } } int n=1 ; for(int i=2; i < anmax; i++) { if( a.count(i) && isprime(i) ) { cout << n << " " << i << endl ; n++ ; } } return 0 ; } /* R. J. Mathar, Aug 20 2006 */
(MATLAB)
N = 10^4;
A = zeros(1, N);
todo = [1];
A(1) = 1;
while numel(todo) > 0
x = todo(1);
todo = todo(2:end);
Y = [2*x, 3*x+2, 6*x+3];
Y = Y(Y <= N);
Y = Y(A(Y) == 0);
A(Y) = 1;
todo = [todo, Y];
end;
S = find(A==1);
S(isprime(S)) % Robert Israel, Jun 17 2015
(PARI) has(n)=if(n<3, return(n>0)); my(k=n%6); if(k==3, return(has(n\6))); if(k==1, return(0)); if(k==5, return(has(n\3))); if(k!=2, return(has(n/2))); has(n\3) || has(n/2)
print1(2); forprime(p=5, 1e5, if(p%3==2 && has(p\3), print1(", "p))) \\ Charles R Greathouse IV, Sep 15 2015
CROSSREFS
Subsequence of A003627.
Sequence in context: A243183 A195271 A077217 * A244085 A019353 A106882
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 18 2006
EXTENSIONS
More terms from R. J. Mathar, Aug 20 2006
STATUS
approved