Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 15 2024 01:37:10
%S 1,3,11,32,90,231,576,1363,3141,7003,15261,32468,67788,138892,280103,
%T 556302,1089991,2108332,4030649,7620671,14261450,26431346,48544170,
%U 88393064,159654022,286149924,509137464,899603036,1579014769
%N Number of multi-trace BPS operators for the quiver gauge theory of the orbifold C^2/Z_2.
%H Vaclav Kotesovec, <a href="/A120844/b120844.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Benvenuti, B. Feng, A. Hanany and Y. H. He, <a href="http://arXiv.org/abs/hep-th/0608050">Counting BPS operators in gauge theories: Quivers, syzygies and plethystics</a>, arXiv:hep-th/0608050.
%H Vaclav Kotesovec, <a href="/A120844/a120844.jpg">Graph - The asymptotic ratio</a>
%F G.f.: exp( Sum_{n>0} (3*x^n - x^(2*n)) / (n*(1-x^n)^2) ).
%F a(n) ~ Zeta(3)^(7/18) * exp(1/6 - Pi^4/(864*Zeta(3)) + Pi^2 * n^(1/3)/(3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(2/9) * 3^(1/2) * Pi * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - _Vaclav Kotesovec_, Mar 07 2015
%p with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+1): seq(a(n), n=0..50); # _Vaclav Kotesovec_, Mar 06 2015 after _Alois P. Heinz_
%t nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+1),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Feb 27 2015 *)
%Y Cf. A005380, A253289, A255271, A255802, A255834.
%K nonn
%O 0,2
%A Amihay Hanany (hanany(AT)mit.edu), Aug 25 2006