%I #44 Aug 15 2020 11:10:28
%S 1,1,4,9,22,46,103,208,431,849,1671,3195,6079,11321,20937,38146,68931,
%T 123121,218212,383019,667425,1153544,1980268,3375394,5717773,9624541,
%U 16108496,26807662,44379189,73089219,119789926,195401275,317309532,513025167,826000651
%N G.f.: Product_{k>=1} 1/(1-x^k)^(2*k-1).
%C a(n) is the number of partitions of n where there are 2*k-1 sorts of parts k. - _Joerg Arndt_, Aug 15 2020
%H Vaclav Kotesovec, <a href="/A253289/b253289.txt">Table of n, a(n) for n = 0..1000</a>
%H Vaclav Kotesovec, <a href="/A253289/a253289.jpg">Graph - The asymptotic ratio</a>
%F a(n) ~ 2^(1/9) * Zeta(3)^(1/18) * exp(1/6 - Pi^4/(864*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 3^(1/2) * n^(5/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
%F G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^2)). - _Ilya Gutkovskiy_, Jun 07 2018
%F Euler transform of A005408 (the odd numbers). - _Georg Fischer_, Aug 15 2020
%p with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n-1): seq(a(n), n=0..50); # after _Alois P. Heinz_
%t nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k-1),{k,1,nmax}],{x,0,nmax}],x]
%t (* Using EulerTransforms from 'Transforms'. *)
%t Prepend[EulerTransform[Table[2k + 1, {k, 0, 20}]], 1] (* _Peter Luschny_, Aug 15 2020 *)
%Y Cf. A120844, A255802, A255835.
%Y Cf. A005408.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Mar 07 2015