Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #81 May 11 2024 16:27:18
%S 1,4,15,40,85,156,259,400,585,820,1111,1464,1885,2380,2955,3616,4369,
%T 5220,6175,7240,8421,9724,11155,12720,14425,16276,18279,20440,22765,
%U 25260,27931,30784,33825,37060,40495,44136,47989,52060,56355,60880
%N a(n) = n^3 + n^2 + n + 1.
%C a(n) = 1111 in base n.
%C n^3 + n^2 + n + 1 = (n^2 + 1)*(n + 1), therefore a(n) is never prime. - _Alonso del Arte_, Apr 22 2014
%H Vincenzo Librandi, <a href="/A053698/b053698.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F For n >= 2, a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).
%F G.f.: (1+5*x^2) / (1-x)^4. - _Colin Barker_, Jan 06 2012
%F a(n) = -A062158(-n). - _Bruno Berselli_, Jan 26 2016
%F a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - _Bruno Berselli_, Jan 02 2017
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - _Colin Barker_, Jan 02 2017
%F a(n) = A104878(n+3,n) = A055129(4,n) for n > 0. - _Mathew Englander_, Jan 06 2021
%F E.g.f.: exp(x)*(x^3+4*x^2+3*x+1). - _Nikolaos Pantelidis_, Feb 06 2023
%e a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
%e a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
%e a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
%e From _Bruno Berselli_, Jan 02 2017: (Start)
%e The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
%e . 1;
%e . 3, 1;
%e . 9, 5, 1;
%e . 19, 13, 7, 1;
%e . 33, 25, 17, 9, 1;
%e . 51, 41, 31, 21, 11, 1;
%e . 73, 61, 49, 37, 25, 13, 1;
%e . 99, 85, 71, 57, 43, 29, 15, 1;
%e . 129, 113, 97, 81, 65, 49, 33, 17, 1;
%e . 163, 145, 127, 109, 91, 73, 55, 37, 19, 1;
%e . 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
%e ...
%e Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
%e (End)
%p A053698:=n->n^3 + n^2 + n + 1; seq(A053698(n), n=0..50); # _Wesley Ivan Hurt_, Apr 22 2014
%t Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* _Alonso del Arte_, Apr 22 2014 *)
%t FromDigits["1111", Range[0, 50]] (* _Paolo Xausa_, May 11 2024 *)
%o (Magma) [n^3+n^2+n+1: n in [0..50]]; // _Vincenzo Librandi_, May 01, 2011
%o (PARI) Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ _Colin Barker_, Jan 02 2017
%o (Python) def a(n): return (n**3+n**2+n+1) # _Torlach Rush_, May 08 2024
%Y Cf. A237627 (subset of semiprimes).
%Y Cf. A056106 (first differences).
%Y Cf. A062158, A027444, A104878, A055129.
%K nonn,easy
%O 0,2
%A _Henry Bottomley_, Mar 23 2000