

A113709


a(n) is the composite between p(n) and p(n+1), where p(n) is the nth prime, which is divisible by (p(n+1)p(n)).


10



4, 6, 8, 12, 16, 18, 20, 24, 30, 36, 40, 42, 44, 48, 54, 60, 66, 68, 72, 78, 80, 84, 96, 100, 102, 104, 108, 112, 126, 128, 132, 138, 140, 150, 156, 162, 164, 168, 174, 180, 190, 192, 196, 198, 204, 216, 224, 228, 232, 234, 240, 250, 252, 258, 264, 270, 276, 280
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Exactly one composite exists between each p(n+1) and p(n) which is divisible by (p(n+1)p(n)), for n >= 2.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 2..1000


FORMULA

a(n)=p(n+1)  (p(n) (mod p(n+1)p(n))).


EXAMPLE

Between the primes 67 and 71 is the composite 68 and 68 is divisible by (7167)=4. So 68 is in the sequence.


MATHEMATICA

f[n_] := Block[{p = Prime[n], q = Prime[n + 1]}, q  Mod[p, q  p]]; Table[ f[n], {n, 2, 60}] (* Robert G. Wilson v *)
cbp[{a_, b_}]:=Select[Range[a+1, b1], Divisible[#, ba]&]; cbp/@ Partition[ Prime[ Range[2, 100]], 2, 1]//Flatten (* Harvey P. Dale, Jan 09 2019 *)


CROSSREFS

Cf. A113710, A111379.
Sequence in context: A199768 A157932 A097619 * A076082 A162648 A225512
Adjacent sequences: A113706 A113707 A113708 * A113710 A113711 A113712


KEYWORD

nonn


AUTHOR

Leroy Quet, Nov 06 2005


EXTENSIONS

More terms from Don Reble and Robert G. Wilson v, Nov 07 2005


STATUS

approved



