The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113711 Triangle, read by rows, where row n forms a polynomial in y=2*k that generates diagonal n as k=0,1,2,... for n>=0; thus T(n,k) = Sum_{j=0..n-k} T(n-k,j)*(2*k)^j, with T(n,0)=T(n,n)=1. 6
 1, 1, 1, 1, 3, 1, 1, 11, 5, 1, 1, 51, 29, 7, 1, 1, 291, 189, 55, 9, 1, 1, 1955, 1373, 463, 89, 11, 1, 1, 14947, 11037, 4159, 921, 131, 13, 1, 1, 127203, 97565, 39871, 9945, 1611, 181, 15, 1, 1, 1188067, 942109, 408703, 112217, 20411, 2581, 239, 17, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Table of n, a(n) for n=0..54. EXAMPLE Triangle begins: 1; 1,1; 1,3,1; 1,11,5,1; 1,51,29,7,1; 1,291,189,55,9,1; 1,1955,1373,463,89,11,1; 1,14947,11037,4159,921,131,13,1; 1,127203,97565,39871,9945,1611,181,15,1; 1,1188067,942109,408703,112217,20411,2581,239,17,1; ... where diagonals are generated by row polynomials: T(6,5) = (1) + (1)*(2*5) = 11. T(6,4) = (1) + (3)*(2*4) + (1)*(2*4)^2 = 89. T(6,3) = (1) + (11)*(2*3) + (5)*(2*3)^2 + (1)*(2*3)^3 = 463. T(6,2) = (1) + (51)*(2*2) + (29)*(2*2)^2 + (7)*(2*2)^3 + (1)*(2*2)^4 = 1373. PROG (PARI) T(n, k)=if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 18:59 EDT 2024. Contains 374388 sequences. (Running on oeis4.)