login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339019
Square table read by upwards antidiagonals: T(m,n) = A103438(2*m-1,n)/A103438(1,n) for m>=1, n>=1.
0
1, 1, 1, 1, 3, 1, 1, 11, 6, 1, 1, 43, 46, 10, 1, 1, 171, 386, 130, 15, 1, 1, 683, 3366, 1870, 295, 21, 1, 1, 2731, 29866, 28234, 6455, 581, 28, 1, 1, 10923, 267086, 437350, 149031, 17941, 1036, 36, 1
OFFSET
1,5
FORMULA
Let a(i,m) = ((-2)^i)*Sum_{j=0..i} C(2*m,i-j)*C(i+j,j)*((i-j)/(i+j))*B(2*m-i+j), B(s) = A027641(s)/A027642(s) the Bernoulli numbers and N = n*(n+1)/2, then T(m,n) = (1/(2*m))*Sum_{i=2..m} a(i,m)*N^(i-1).
EXAMPLE
T(3,4) = A103438(2*3-1,4)/A103438(1,4) = 1300/10 = 130.
By formula: a(2,3) = 4*15*1*1*B(4) = -2 and a(3,3) = (-8)*15*4*(2/4)*B(4) = 8 yields T(3,n) = (-N+4*N^2)/3. Since N = 4*5/2 = 10, T(3,4) = (4*10^2-10)/3 = 130.
Table begins:
m\n| 1 2 3 4 5 6 7
---+-----------------------------------------------------
1 | 1 1 1 1 1 1 1
2 | 1 3 6 10 15 21 28
3 | 1 11 46 130 295 581 1036
4 | 1 43 386 1870 6455 17941 42868
5 | 1 171 3366 28234 149031 586341 1880956
6 | 1 683 29866 437350 3546775 19809461 85475908
7 | 1 2731 267086 6871138 85960967 683338501 3972825676
CROSSREFS
Cf. A103438.
Sequence in context: A120270 A243752 A113711 * A257894 A103997 A256895
KEYWORD
nonn,tabl
AUTHOR
Franz Vrabec, Dec 24 2020
STATUS
approved