Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 24 2024 02:05:10
%S 1,2,3,6,9,10,11,14,19,24,27,28,29,32,37,42,47,48,51,56,57,60,71,74,
%T 75,76,79,82,95,96,99,104,105,114,119,124,125,128,133,138,147,148,151,
%U 152,157,168,175,178,181,182,187,196,197,202,207,212,217,220,221,228,231
%N Order of A113709(n) among composite positive integers.
%F a(n) = A066246(A113709(n)). - _R. J. Mathar_, Jan 12 2008
%e The 10th prime - the 9th prime = 29-23 = 6. The integer between 23 and 29 that is divisible by 6 is 24. 24 is the 14th composite, so a(9) = 14.
%p A113709 := proc(n) local d,a ; d := ithprime(n+1)-ithprime(n) ; for a from ithprime(n)+1 do if a mod d = 0 then RETURN(a) ; fi ; od: end: A066246 := proc(n) local a,i; if n = 1 or isprime(n) then 0 ; else a := 0 ; for i from 4 to n do if not isprime(i) then a := a+1 ; fi ; od: RETURN(a) ; fi ; end: A133555 := proc(n) A066246(A113709(n)) ; end: seq(A133555(n),n=2..80) ; # _R. J. Mathar_, Jan 12 2008
%t compositePi[n_] := n - PrimePi[n] - 1;
%t a[n_] := Module[{p1 = Prime[n], p2 = Prime[n+1], c}, c = SelectFirst[ Range[p1+1, p2-1], Divisible[#, p2-p1]&]; compositePi[c]];
%t Table[a[n], {n, 2, 62}] (* _Jean-François Alcover_, Apr 02 2024 *)
%Y Cf. A066246, A113709.
%K nonn
%O 2,2
%A _Leroy Quet_, Dec 25 2007
%E More terms from _R. J. Mathar_, Jan 12 2008