login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133557
Numbers k for which the sum of squares of five consecutive primes starting with prime(k) is prime (A133559).
0
2, 3, 9, 10, 11, 16, 18, 25, 26, 28, 31, 33, 36, 42, 43, 46, 47, 54, 56, 58, 63, 68, 76, 87, 91, 93, 99, 101, 105, 106, 114, 127, 131, 145, 153, 159, 183, 186, 196, 201, 206, 229, 230, 232, 233, 238, 239, 241, 244, 245, 246, 248, 253, 256, 257, 264, 265, 266, 268
OFFSET
1,1
COMMENTS
For sums of squares of two consecutive primes, only k=1 yields a prime.
For sums of squares of three consecutive primes A133529, it seems that only k=2 yields a prime (checked for all k < 1000000).
Sums of squares of four (and all even numbers of) consecutive primes are even numbers except at k=1.
EXAMPLE
a(1)=2 because prime(2)^2 + prime(3)^2 + prime(4)^2 + prime(5)^2 + prime(6)^2 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373 is prime.
MATHEMATICA
b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a; If[PrimeQ[k], AppendTo[b, n]], {n, 1, 100}]; b (* Artur Jasinski *)
CROSSREFS
Sequence in context: A037463 A309348 A270886 * A047475 A376200 A291610
KEYWORD
nonn
AUTHOR
Artur Jasinski, Sep 16 2007
EXTENSIONS
Name and example corrected by Jonathan Sondow, Nov 04 2015
STATUS
approved