login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004290
Least positive multiple of n that when written in base 10 uses only 0's and 1's.
45
1, 10, 111, 100, 10, 1110, 1001, 1000, 111111111, 10, 11, 11100, 1001, 10010, 1110, 10000, 11101, 1111111110, 11001, 100, 10101, 110, 110101, 111000, 100, 10010, 1101111111, 100100, 1101101, 1110, 111011, 100000, 111111, 111010
OFFSET
1,2
COMMENTS
It is easy to show that a(n) always exists and in fact has at most n digits [Wu, 2014]. - N. J. A. Sloane, Jun 13 2014
a(n) = min{A007088(k): k > 0 and A007088(k) mod n = 0}. - Reinhard Zumkeller, Jan 10 2012
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..9998 (first 2000 terms from T. D. Noe [and Ed Pegg Link])
Ed Pegg Jr., 'Binary' Puzzle.
Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
FORMULA
a(n) = n*A079339(n). - Jonathan Sondow, Jun 15 2014
MAPLE
f:= proc(n)
local L, x, m, r, k, j;
for x from 2 to n-1 do L[0, x]:= 0 od:
L[0, 0]:= 1: L[0, 1]:= 1;
for m from 1 do
if L[m-1, (-10^m) mod n] = 1 then break fi;
L[m, 0]:= 1;
for k from 1 to n-1 do
L[m, k]:= max(L[m-1, k], L[m-1, k-10^m mod n])
od;
od;
r:= 10^m; k:= -10^m mod n;
for j from m-1 by -1 to 1 do
if L[j-1, k] = 0 then
r:= r + 10^j; k:= k - 10^j mod n;
fi
od;
if k = 1 then r:= r + 1 fi;
r
end proc:
0, 1, seq(f(n), n=2..100); # Robert Israel, Feb 09 2016
MATHEMATICA
a[n_] := For[k = 1, True, k++, b = FromDigits[ IntegerDigits[k, 2] ]; If[Mod[b, n] == 0, Return[b]]]; a[0] = 0; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 14 2013, after Reinhard Zumkeller *)
With[{c=Rest[Union[FromDigits/@Flatten[Table[Tuples[{1, 0}, i], {i, 10}], 1]]]}, Join[{0}, Flatten[ Table[ Select[c, Divisible[#, n]&, 1], {n, 40}]]]] (* Harvey P. Dale, Dec 07 2013 *)
PROG
(Haskell)
a004290 0 = 0
a004290 n = head [x | x <- tail a007088_list, mod x n == 0]
-- Reinhard Zumkeller, Jan 10 2012
(Python) def A004290(n):
if n > 0:
for i in range(1, 2**n):
x = int(bin(i)[2:])
if not x % n:
return x
return 0
# Chai Wah Wu, Dec 30 2014
(PARI) a(n) = {if( n==0, return (0)); my(m = n); while (vecmax(digits(m)) != 1, m+=n); m; } \\ Michel Marcus, Feb 09 2016, May 27 2020
KEYWORD
nonn,base,nice
EXTENSIONS
Initial 0 deleted and offset corrected by N. J. A. Sloane, Jan 31 2024
STATUS
approved