The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047799 a(n) = Sum_{k=0..n} C(n,k)*Stirling1(n,k)^2. 2
 1, 1, 3, 40, 1015, 40631, 2334766, 180836664, 18067408311, 2254675244287, 342877692847261, 62311687363814736, 13318714515734069806, 3304254169559017642774, 940912768920331123369272, 304601441677789509306775856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..245 MAPLE seq(add(binomial(n, k)*stirling1(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019 MATHEMATICA Table[Sum[Binomial[n, k]*StirlingS1[n, k]^2, {k, 0, n}], {n, 0, 20}] (* G. C. Greubel, Aug 07 2019 *) PROG (PARI) {a(n) = sum(k=0, n, binomial(n, k)*stirling(n, k, 1)^2)}; vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019 (MAGMA) [(&+[Binomial(n, k)*StirlingFirst(n, k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019 (Sage) [sum(binomial(n, k)*stirling_number1(n, k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019 (GAP) List([0..20], n-> Sum([0..n], k-> Binomial(n, k)*Stirling1(n, k)^2 )) # G. C. Greubel, Aug 07 2019 CROSSREFS Cf. A008275, A047798, A122455. Sequence in context: A143640 A341849 A260754 * A204515 A012250 A094330 Adjacent sequences:  A047796 A047797 A047798 * A047800 A047801 A047802 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 01:36 EDT 2021. Contains 342912 sequences. (Running on oeis4.)