login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047796
a(n) = Sum_{k=0..n} Stirling1(n,k)^2.
4
1, 1, 2, 14, 194, 4402, 147552, 6838764, 418389078, 32639603798, 3161107700156, 372023906062756, 52280302234036252, 8645773770675973804, 1661888635268695003484, 367390786215560629372920, 92552610850186107484661670, 26356304249588730696338349990
OFFSET
0,3
LINKS
Vincenzo Librandi and Vaclav Kotesovec, Table of n, a(n) for n = 0..250 (terms 0..41 from Vincenzo Librandi)
MAPLE
seq(add(stirling1(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
MATHEMATICA
Table[Sum[StirlingS1[n, k]^2, {k, 0, n}], {n, 0, 20}] (* Emanuele Munarini, Jul 04 2011 *)
PROG
(Maxima) makelist(sum(stirling1(n, k)^2, k, 0, n), n, 0, 24); \\ Emanuele Munarini, Jul 04 2011
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)^2); \\ Michel Marcus, Mar 26 2016
(Magma) [(&+[StirlingFirst(n, k)^2: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 07 2019
(Sage) [sum(stirling_number1(n, k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
(GAP) List([0..20], n-> Sum([0..n], k-> Stirling1(n, k)^2 )); # G. C. Greubel, Aug 07 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved