login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047794
a(n) = Sum_{k=0..n} C(n,k)*|Stirling1(n,k)*Stirling2(n,k)|.
4
1, 1, 3, 34, 631, 16871, 617356, 28968990, 1680536159, 117572734195, 9715771690081, 932711356031016, 102653506699902874, 12810868034079756421, 1795954763065584594656, 280569433733767673934426, 48506369621902094002862671, 9224242346164172284054561019
OFFSET
0,3
LINKS
MAPLE
seq(add((-1)^(n-k)*binomial(n, k)*stirling1(n, k)*stirling2(n, k), k = 0 .. n), n = 0..20); # G. C. Greubel, Aug 07 2019
MATHEMATICA
Table[Sum[Binomial[n, k]Abs[StirlingS1[n, k]StirlingS2[n, k]], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*stirling(n, k, 1)*stirling(n, k, 2) *binomial(n, k))};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
(Magma) [(&+[(-1)^(n-k)*StirlingFirst(n, k)*StirlingSecond(n, k) *Binomial(n, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
(Sage) [sum(stirling_number1(n, k)*stirling_number2(n, k)*binomial(n, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
(GAP) List([0..20], n-> Sum([0..n], k-> Stirling1(n, k)*Stirling2(n, k) *Binomial(n, k) )); # G. C. Greubel, Aug 07 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved