OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..275
MAPLE
seq(add((-1)^(n-k)*binomial(n, k)*stirling1(n, k)*stirling2(n, k), k = 0 .. n), n = 0..20); # G. C. Greubel, Aug 07 2019
MATHEMATICA
Table[Sum[Binomial[n, k]Abs[StirlingS1[n, k]StirlingS2[n, k]], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*stirling(n, k, 1)*stirling(n, k, 2) *binomial(n, k))};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
(Magma) [(&+[(-1)^(n-k)*StirlingFirst(n, k)*StirlingSecond(n, k) *Binomial(n, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
(Sage) [sum(stirling_number1(n, k)*stirling_number2(n, k)*binomial(n, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
(GAP) List([0..20], n-> Sum([0..n], k-> Stirling1(n, k)*Stirling2(n, k) *Binomial(n, k) )); # G. C. Greubel, Aug 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved