login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047797
a(n) = Sum_{k=0..n} Stirling2(n,k)^2.
7
1, 1, 2, 11, 87, 952, 13513, 237113, 5016728, 125121009, 3615047527, 119384499720, 4455637803543, 186152008588691, 8636436319397292, 441871067839416319, 24781002306869712365, 1515279889256750470086, 100546673139756241189021
OFFSET
0,3
COMMENTS
If S is the lower matrix of Stirling numbers of the second kind, this sequence (without the first term 1) is the diagonal of the matrix S.Transpose[S]. - Sergio Falcon, May 02 2007
LINKS
MAPLE
seq(add(Stirling2(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
MATHEMATICA
Table[Sum[StirlingS2[n, k]^2, {k, 0, n}], {n, 0, 20}] (* Emanuele Munarini, Jul 01 2011 *)
PROG
(Maxima) makelist(sum(stirling2(n, k)^2, k, 0, n), n, 0, 20); # Emanuele Munarini, Jul 01 2011
(PARI) {a(n) = sum(k=0, n, stirling(n, k, 2)^2)};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
(Magma) [(&+[StirlingSecond(n, k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
(Sage) [sum(stirling_number2(n, k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
(GAP) List([0..20], n-> Sum([0..n], k-> Stirling2(n, k)^2 )); # G. C. Greubel, Aug 07 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved