login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047800
Number of different values of i^2 + j^2 for i,j in [0, n].
13
1, 3, 6, 10, 15, 20, 27, 34, 42, 51, 61, 71, 83, 94, 106, 120, 135, 148, 165, 180, 198, 216, 235, 252, 273, 294, 315, 337, 360, 382, 408, 431, 457, 484, 508, 536, 567, 595, 624, 653, 687, 715, 749, 781, 813, 850, 884, 919, 957, 993, 1031, 1069, 1108, 1142
OFFSET
0,2
COMMENTS
a(n-1) is the number of distinct distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013
Conjecture (after Landau and Erdős): a(n) ~ c * n^2 / sqrt(log(n)), where c = 0.79... . - Vaclav Kotesovec, Mar 10 2016
LINKS
T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from T. D. Noe)
Erdős, P., On sets of distances of n points, American Mathematical Monthly 53, pp. 248-250 (1946).
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 2, Leipzig B. G. Teubner, 1909, p. 643.
MATHEMATICA
Table[ Length@Union[ Flatten[ Table[ i^2+j^2, {i, 0, n}, {j, 0, n} ] ] ], {n, 0, 49} ]
nmax = 100; sq = Table[i^2 + j^2, {i, 0, nmax}, {j, 0, nmax}]; Table[Length@Union[Flatten[Table[Take[sq[[j]], n + 1], {j, 1, n + 1}]]], {n, 0, nmax}] (* Vaclav Kotesovec, Mar 09 2016 *)
PROG
(Haskell)
import Data.List (nub)
a047800 n = length $ nub [i^2 + j^2 | i <- [0..n], j <- [i..n]]
-- Reinhard Zumkeller, Oct 03 2012
(PARI) a(n)=#vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8) \\ Charles R Greathouse IV, Jun 13 2013
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved