login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160663
Number of distinct sums that one can obtain by adding two squares among the n first ones.
4
2, 5, 9, 14, 19, 26, 33, 41, 50, 60, 70, 82, 93, 105, 119, 134, 147, 164, 179, 197, 215, 234, 251, 272, 293, 314, 336, 359, 381, 407, 430, 456, 483, 507, 535, 566, 594, 623, 652, 686, 714, 748, 780, 812, 849, 883, 918, 956, 992, 1030, 1068, 1107, 1141, 1181
OFFSET
1,1
COMMENTS
Essentially the same as A047800: a(n) = A047800(n) - 1.
Let A be the set of the n first squares (1,4,9,...,n^2). Let A+A be the corresponding sumset (= {a,b,a+b where (a,b) in A^2}). That very sequence describes the number of elements of A+A, relatively to n.
a(n-1) is the number of distinct positive distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013
An upper bound is a(n) <= A102548(2n^2) << n^2/log n. - Charles R Greathouse IV, Jan 16 2023
REFERENCES
Melvyn B. Nathanson (1996). "Additive Number Theory: the Classical Bases" Graduate Texts in Mathematics. 164. Springer-Verlag. p. 192. ISBN 0-387-94656-X.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690.
L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690. doi:10.1007/BF01448914.
Samuel S. Wagstaff, Jr., The Schnirelmann density of the sums of three squares, Proc. Amer. Math. Soc. 52 (1975), 1-7.
Wikipedia, Edmund Landau
FORMULA
a(n) = card(A+A) where A={k^2} k=1..n and A+A = {a,b,a+b where (a,b) in A^2}.
Trivially 2n <= a(n) <= n(n+1)/2. - Charles R Greathouse IV, Oct 30 2015
a(n) << n^2/sqrt(log n) [see A000404]. - Charles R Greathouse IV, Oct 30 2015
EXAMPLE
For n = 3, A = {1,4,9}, A+A = {1,4,9} U {2,5,10,8,13,18} thus A+A = {1,2,4,5,8,9,10,13,18}, and hence card(A+A) = 9; a(3) = 9.
MAPLE
a:= proc(n) local A, i, j; A:= [i^2$i=1..n]; nops([{A[], seq (seq (A[i]+A[j], j=1..i), i=1..nops(A))}[]]) end: seq (a(n), n=1..60); # Alois P. Heinz, Jun 16 2009
MATHEMATICA
a[n_] := (Table[i^2 + j^2, {i, 0, n}, {j, i, n}] // Flatten // Union // Length) - 1; Array[a, 60] (* Jean-François Alcover, May 25 2018 *)
PROG
(Python)
def a(n):
SUM, SQR = set(), set(x**2 for x in range(1, n + 1))
for i in SQR:
SUM.add(i)
for j in SQR: SUM.add(i + j)
return len(SUM)
# Romain CARRE (romain.carre.2008(AT)enseirb.fr), Apr 16 2010
(PARI) a(n)=n++; #vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8)-1 \\ Charles R Greathouse IV, Jun 13 2013
(PARI) a(n)=my(u=vector(n, i, i^2), v=List(u)); for(i=1, n, for(j=1, i, listput(v, u[i]+u[j]))); u=0; #Set(v) \\ Charles R Greathouse IV, Nov 18 2022
(PARI) first(n)=my(v=vector(n), u=[]); for(k=1, n, my(k2=k^2, w=vector(k, i, i^2+k2)); w=setunion(w, [k2]); u=setunion(u, w); v[k]=#u); v \\ Charles R Greathouse IV, Nov 18 2022
CROSSREFS
Sequence in context: A266899 A112265 A025281 * A024201 A110443 A130029
KEYWORD
nonn
AUTHOR
Romain CARRE (romain.carre.2008(AT)enseirb.fr), May 22 2009
EXTENSIONS
More terms from Alois P. Heinz, Jun 16 2009
STATUS
approved