login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160663 Number of distinct sums that one can obtain by adding two squares among the n first ones. 4
2, 5, 9, 14, 19, 26, 33, 41, 50, 60, 70, 82, 93, 105, 119, 134, 147, 164, 179, 197, 215, 234, 251, 272, 293, 314, 336, 359, 381, 407, 430, 456, 483, 507, 535, 566, 594, 623, 652, 686, 714, 748, 780, 812, 849, 883, 918, 956, 992, 1030, 1068, 1107, 1141, 1181 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Essentially the same as A047800: a(n) = A047800(n) - 1.
Let A be the set of the n first squares (1,4,9,...,n^2). Let A+A be the corresponding sumset (= {a,b,a+b where (a,b) in A^2}). That very sequence describes the number of elements of A+A, relatively to n.
a(n-1) is the number of distinct positive distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013
An upper bound is a(n) <= A102548(2n^2) << n^2/log n. - Charles R Greathouse IV, Jan 16 2023
REFERENCES
Melvyn B. Nathanson (1996). "Additive Number Theory: the Classical Bases" Graduate Texts in Mathematics. 164. Springer-Verlag. p. 192. ISBN 0-387-94656-X.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690.
L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690. doi:10.1007/BF01448914.
Samuel S. Wagstaff, Jr., The Schnirelmann density of the sums of three squares, Proc. Amer. Math. Soc. 52 (1975), 1-7.
Wikipedia, Edmund Landau
FORMULA
a(n) = card(A+A) where A={k^2} k=1..n and A+A = {a,b,a+b where (a,b) in A^2}.
Trivially 2n <= a(n) <= n(n+1)/2. - Charles R Greathouse IV, Oct 30 2015
a(n) << n^2/sqrt(log n) [see A000404]. - Charles R Greathouse IV, Oct 30 2015
EXAMPLE
For n = 3, A = {1,4,9}, A+A = {1,4,9} U {2,5,10,8,13,18} thus A+A = {1,2,4,5,8,9,10,13,18}, and hence card(A+A) = 9; a(3) = 9.
MAPLE
a:= proc(n) local A, i, j; A:= [i^2$i=1..n]; nops([{A[], seq (seq (A[i]+A[j], j=1..i), i=1..nops(A))}[]]) end: seq (a(n), n=1..60); # Alois P. Heinz, Jun 16 2009
MATHEMATICA
a[n_] := (Table[i^2 + j^2, {i, 0, n}, {j, i, n}] // Flatten // Union // Length) - 1; Array[a, 60] (* Jean-François Alcover, May 25 2018 *)
PROG
(Python)
def a(n):
SUM, SQR = set(), set(x**2 for x in range(1, n + 1))
for i in SQR:
SUM.add(i)
for j in SQR: SUM.add(i + j)
return len(SUM)
# Romain CARRE (romain.carre.2008(AT)enseirb.fr), Apr 16 2010
(PARI) a(n)=n++; #vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8)-1 \\ Charles R Greathouse IV, Jun 13 2013
(PARI) a(n)=my(u=vector(n, i, i^2), v=List(u)); for(i=1, n, for(j=1, i, listput(v, u[i]+u[j]))); u=0; #Set(v) \\ Charles R Greathouse IV, Nov 18 2022
(PARI) first(n)=my(v=vector(n), u=[]); for(k=1, n, my(k2=k^2, w=vector(k, i, i^2+k2)); w=setunion(w, [k2]); u=setunion(u, w); v[k]=#u); v \\ Charles R Greathouse IV, Nov 18 2022
CROSSREFS
Sequence in context: A266899 A112265 A025281 * A024201 A110443 A130029
KEYWORD
nonn
AUTHOR
Romain CARRE (romain.carre.2008(AT)enseirb.fr), May 22 2009
EXTENSIONS
More terms from Alois P. Heinz, Jun 16 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 16:22 EDT 2024. Contains 371780 sequences. (Running on oeis4.)